This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 1 for rhmsubc . (Contributed by AV, 2-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rngcrescrhm.u | |- ( ph -> U e. V ) |
|
| rngcrescrhm.c | |- C = ( RngCat ` U ) |
||
| rngcrescrhm.r | |- ( ph -> R = ( Ring i^i U ) ) |
||
| rngcrescrhm.h | |- H = ( RingHom |` ( R X. R ) ) |
||
| Assertion | rhmsubclem1 | |- ( ph -> H Fn ( R X. R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngcrescrhm.u | |- ( ph -> U e. V ) |
|
| 2 | rngcrescrhm.c | |- C = ( RngCat ` U ) |
|
| 3 | rngcrescrhm.r | |- ( ph -> R = ( Ring i^i U ) ) |
|
| 4 | rngcrescrhm.h | |- H = ( RingHom |` ( R X. R ) ) |
|
| 5 | eqid | |- ( x e. R , y e. R |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) = ( x e. R , y e. R |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) |
|
| 6 | ovex | |- ( x GrpHom y ) e. _V |
|
| 7 | 6 | inex1 | |- ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) e. _V |
| 8 | 5 7 | fnmpoi | |- ( x e. R , y e. R |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) Fn ( R X. R ) |
| 9 | 4 | a1i | |- ( ph -> H = ( RingHom |` ( R X. R ) ) ) |
| 10 | dfrhm2 | |- RingHom = ( x e. Ring , y e. Ring |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) |
|
| 11 | 10 | a1i | |- ( ph -> RingHom = ( x e. Ring , y e. Ring |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) ) |
| 12 | 11 | reseq1d | |- ( ph -> ( RingHom |` ( R X. R ) ) = ( ( x e. Ring , y e. Ring |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) |` ( R X. R ) ) ) |
| 13 | inss1 | |- ( Ring i^i U ) C_ Ring |
|
| 14 | 3 13 | eqsstrdi | |- ( ph -> R C_ Ring ) |
| 15 | resmpo | |- ( ( R C_ Ring /\ R C_ Ring ) -> ( ( x e. Ring , y e. Ring |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) |` ( R X. R ) ) = ( x e. R , y e. R |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) ) |
|
| 16 | 14 14 15 | syl2anc | |- ( ph -> ( ( x e. Ring , y e. Ring |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) |` ( R X. R ) ) = ( x e. R , y e. R |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) ) |
| 17 | 9 12 16 | 3eqtrd | |- ( ph -> H = ( x e. R , y e. R |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) ) |
| 18 | 17 | fneq1d | |- ( ph -> ( H Fn ( R X. R ) <-> ( x e. R , y e. R |-> ( ( x GrpHom y ) i^i ( ( mulGrp ` x ) MndHom ( mulGrp ` y ) ) ) ) Fn ( R X. R ) ) ) |
| 19 | 8 18 | mpbiri | |- ( ph -> H Fn ( R X. R ) ) |