This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category of non-unital rings is a category. (Contributed by AV, 27-Feb-2020) (Revised by AV, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rngccat.c | |- C = ( RngCat ` U ) |
|
| Assertion | rngccat | |- ( U e. V -> C e. Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngccat.c | |- C = ( RngCat ` U ) |
|
| 2 | id | |- ( U e. V -> U e. V ) |
|
| 3 | eqidd | |- ( U e. V -> ( U i^i Rng ) = ( U i^i Rng ) ) |
|
| 4 | eqidd | |- ( U e. V -> ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) = ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) |
|
| 5 | 1 2 3 4 | rngcval | |- ( U e. V -> C = ( ( ExtStrCat ` U ) |`cat ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) ) |
| 6 | eqid | |- ( ( ExtStrCat ` U ) |`cat ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) = ( ( ExtStrCat ` U ) |`cat ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) |
|
| 7 | eqid | |- ( ExtStrCat ` U ) = ( ExtStrCat ` U ) |
|
| 8 | eqidd | |- ( U e. V -> ( Rng i^i U ) = ( Rng i^i U ) ) |
|
| 9 | incom | |- ( U i^i Rng ) = ( Rng i^i U ) |
|
| 10 | 9 | a1i | |- ( U e. V -> ( U i^i Rng ) = ( Rng i^i U ) ) |
| 11 | 10 | sqxpeqd | |- ( U e. V -> ( ( U i^i Rng ) X. ( U i^i Rng ) ) = ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) |
| 12 | 11 | reseq2d | |- ( U e. V -> ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) = ( RngHom |` ( ( Rng i^i U ) X. ( Rng i^i U ) ) ) ) |
| 13 | 7 2 8 12 | rnghmsubcsetc | |- ( U e. V -> ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) e. ( Subcat ` ( ExtStrCat ` U ) ) ) |
| 14 | 6 13 | subccat | |- ( U e. V -> ( ( ExtStrCat ` U ) |`cat ( RngHom |` ( ( U i^i Rng ) X. ( U i^i Rng ) ) ) ) e. Cat ) |
| 15 | 5 14 | eqeltrd | |- ( U e. V -> C e. Cat ) |