This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: ( SubcatC ) is the set of all the subcategory specifications of the category C . Like df-subg , this is not actually a collection of categories (as in definition 4.1(a) of Adamek p. 48), but only sets which when given operations from the base category (using df-resc ) form a category. All the objects and all the morphisms of the subcategory belong to the supercategory. The identity of an object, the domain and the codomain of a morphism are the same in the subcategory and the supercategory. The composition of the subcategory is a restriction of the composition of the supercategory. (Contributed by FL, 17-Sep-2009) (Revised by Mario Carneiro, 4-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-subc | |- Subcat = ( c e. Cat |-> { h | ( h C_cat ( Homf ` c ) /\ [. dom dom h / s ]. A. x e. s ( ( ( Id ` c ) ` x ) e. ( x h x ) /\ A. y e. s A. z e. s A. f e. ( x h y ) A. g e. ( y h z ) ( g ( <. x , y >. ( comp ` c ) z ) f ) e. ( x h z ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csubc | |- Subcat |
|
| 1 | vc | |- c |
|
| 2 | ccat | |- Cat |
|
| 3 | vh | |- h |
|
| 4 | 3 | cv | |- h |
| 5 | cssc | |- C_cat |
|
| 6 | chomf | |- Homf |
|
| 7 | 1 | cv | |- c |
| 8 | 7 6 | cfv | |- ( Homf ` c ) |
| 9 | 4 8 5 | wbr | |- h C_cat ( Homf ` c ) |
| 10 | 4 | cdm | |- dom h |
| 11 | 10 | cdm | |- dom dom h |
| 12 | vs | |- s |
|
| 13 | vx | |- x |
|
| 14 | 12 | cv | |- s |
| 15 | ccid | |- Id |
|
| 16 | 7 15 | cfv | |- ( Id ` c ) |
| 17 | 13 | cv | |- x |
| 18 | 17 16 | cfv | |- ( ( Id ` c ) ` x ) |
| 19 | 17 17 4 | co | |- ( x h x ) |
| 20 | 18 19 | wcel | |- ( ( Id ` c ) ` x ) e. ( x h x ) |
| 21 | vy | |- y |
|
| 22 | vz | |- z |
|
| 23 | vf | |- f |
|
| 24 | 21 | cv | |- y |
| 25 | 17 24 4 | co | |- ( x h y ) |
| 26 | vg | |- g |
|
| 27 | 22 | cv | |- z |
| 28 | 24 27 4 | co | |- ( y h z ) |
| 29 | 26 | cv | |- g |
| 30 | 17 24 | cop | |- <. x , y >. |
| 31 | cco | |- comp |
|
| 32 | 7 31 | cfv | |- ( comp ` c ) |
| 33 | 30 27 32 | co | |- ( <. x , y >. ( comp ` c ) z ) |
| 34 | 23 | cv | |- f |
| 35 | 29 34 33 | co | |- ( g ( <. x , y >. ( comp ` c ) z ) f ) |
| 36 | 17 27 4 | co | |- ( x h z ) |
| 37 | 35 36 | wcel | |- ( g ( <. x , y >. ( comp ` c ) z ) f ) e. ( x h z ) |
| 38 | 37 26 28 | wral | |- A. g e. ( y h z ) ( g ( <. x , y >. ( comp ` c ) z ) f ) e. ( x h z ) |
| 39 | 38 23 25 | wral | |- A. f e. ( x h y ) A. g e. ( y h z ) ( g ( <. x , y >. ( comp ` c ) z ) f ) e. ( x h z ) |
| 40 | 39 22 14 | wral | |- A. z e. s A. f e. ( x h y ) A. g e. ( y h z ) ( g ( <. x , y >. ( comp ` c ) z ) f ) e. ( x h z ) |
| 41 | 40 21 14 | wral | |- A. y e. s A. z e. s A. f e. ( x h y ) A. g e. ( y h z ) ( g ( <. x , y >. ( comp ` c ) z ) f ) e. ( x h z ) |
| 42 | 20 41 | wa | |- ( ( ( Id ` c ) ` x ) e. ( x h x ) /\ A. y e. s A. z e. s A. f e. ( x h y ) A. g e. ( y h z ) ( g ( <. x , y >. ( comp ` c ) z ) f ) e. ( x h z ) ) |
| 43 | 42 13 14 | wral | |- A. x e. s ( ( ( Id ` c ) ` x ) e. ( x h x ) /\ A. y e. s A. z e. s A. f e. ( x h y ) A. g e. ( y h z ) ( g ( <. x , y >. ( comp ` c ) z ) f ) e. ( x h z ) ) |
| 44 | 43 12 11 | wsbc | |- [. dom dom h / s ]. A. x e. s ( ( ( Id ` c ) ` x ) e. ( x h x ) /\ A. y e. s A. z e. s A. f e. ( x h y ) A. g e. ( y h z ) ( g ( <. x , y >. ( comp ` c ) z ) f ) e. ( x h z ) ) |
| 45 | 9 44 | wa | |- ( h C_cat ( Homf ` c ) /\ [. dom dom h / s ]. A. x e. s ( ( ( Id ` c ) ` x ) e. ( x h x ) /\ A. y e. s A. z e. s A. f e. ( x h y ) A. g e. ( y h z ) ( g ( <. x , y >. ( comp ` c ) z ) f ) e. ( x h z ) ) ) |
| 46 | 45 3 | cab | |- { h | ( h C_cat ( Homf ` c ) /\ [. dom dom h / s ]. A. x e. s ( ( ( Id ` c ) ` x ) e. ( x h x ) /\ A. y e. s A. z e. s A. f e. ( x h y ) A. g e. ( y h z ) ( g ( <. x , y >. ( comp ` c ) z ) f ) e. ( x h z ) ) ) } |
| 47 | 1 2 46 | cmpt | |- ( c e. Cat |-> { h | ( h C_cat ( Homf ` c ) /\ [. dom dom h / s ]. A. x e. s ( ( ( Id ` c ) ` x ) e. ( x h x ) /\ A. y e. s A. z e. s A. f e. ( x h y ) A. g e. ( y h z ) ( g ( <. x , y >. ( comp ` c ) z ) f ) e. ( x h z ) ) ) } ) |
| 48 | 0 47 | wceq | |- Subcat = ( c e. Cat |-> { h | ( h C_cat ( Homf ` c ) /\ [. dom dom h / s ]. A. x e. s ( ( ( Id ` c ) ` x ) e. ( x h x ) /\ A. y e. s A. z e. s A. f e. ( x h y ) A. g e. ( y h z ) ( g ( <. x , y >. ( comp ` c ) z ) f ) e. ( x h z ) ) ) } ) |