This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The unital ring homomorphisms between unital rings (in a universe) are a subcategory subset of the non-unital ring homomorphisms between non-unital rings (in the same universe). (Contributed by AV, 1-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rhmsscrnghm.u | |- ( ph -> U e. V ) |
|
| rhmsscrnghm.r | |- ( ph -> R = ( Ring i^i U ) ) |
||
| rhmsscrnghm.s | |- ( ph -> S = ( Rng i^i U ) ) |
||
| Assertion | rhmsscrnghm | |- ( ph -> ( RingHom |` ( R X. R ) ) C_cat ( RngHom |` ( S X. S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmsscrnghm.u | |- ( ph -> U e. V ) |
|
| 2 | rhmsscrnghm.r | |- ( ph -> R = ( Ring i^i U ) ) |
|
| 3 | rhmsscrnghm.s | |- ( ph -> S = ( Rng i^i U ) ) |
|
| 4 | ringrng | |- ( r e. Ring -> r e. Rng ) |
|
| 5 | 4 | a1i | |- ( ph -> ( r e. Ring -> r e. Rng ) ) |
| 6 | 5 | ssrdv | |- ( ph -> Ring C_ Rng ) |
| 7 | 6 | ssrind | |- ( ph -> ( Ring i^i U ) C_ ( Rng i^i U ) ) |
| 8 | 7 2 3 | 3sstr4d | |- ( ph -> R C_ S ) |
| 9 | ovres | |- ( ( x e. R /\ y e. R ) -> ( x ( RingHom |` ( R X. R ) ) y ) = ( x RingHom y ) ) |
|
| 10 | 9 | adantl | |- ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( x ( RingHom |` ( R X. R ) ) y ) = ( x RingHom y ) ) |
| 11 | 10 | eleq2d | |- ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( h e. ( x ( RingHom |` ( R X. R ) ) y ) <-> h e. ( x RingHom y ) ) ) |
| 12 | rhmisrnghm | |- ( h e. ( x RingHom y ) -> h e. ( x RngHom y ) ) |
|
| 13 | 8 | sseld | |- ( ph -> ( x e. R -> x e. S ) ) |
| 14 | 8 | sseld | |- ( ph -> ( y e. R -> y e. S ) ) |
| 15 | 13 14 | anim12d | |- ( ph -> ( ( x e. R /\ y e. R ) -> ( x e. S /\ y e. S ) ) ) |
| 16 | 15 | imp | |- ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( x e. S /\ y e. S ) ) |
| 17 | ovres | |- ( ( x e. S /\ y e. S ) -> ( x ( RngHom |` ( S X. S ) ) y ) = ( x RngHom y ) ) |
|
| 18 | 16 17 | syl | |- ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( x ( RngHom |` ( S X. S ) ) y ) = ( x RngHom y ) ) |
| 19 | 18 | eleq2d | |- ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( h e. ( x ( RngHom |` ( S X. S ) ) y ) <-> h e. ( x RngHom y ) ) ) |
| 20 | 12 19 | imbitrrid | |- ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( h e. ( x RingHom y ) -> h e. ( x ( RngHom |` ( S X. S ) ) y ) ) ) |
| 21 | 11 20 | sylbid | |- ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( h e. ( x ( RingHom |` ( R X. R ) ) y ) -> h e. ( x ( RngHom |` ( S X. S ) ) y ) ) ) |
| 22 | 21 | ssrdv | |- ( ( ph /\ ( x e. R /\ y e. R ) ) -> ( x ( RingHom |` ( R X. R ) ) y ) C_ ( x ( RngHom |` ( S X. S ) ) y ) ) |
| 23 | 22 | ralrimivva | |- ( ph -> A. x e. R A. y e. R ( x ( RingHom |` ( R X. R ) ) y ) C_ ( x ( RngHom |` ( S X. S ) ) y ) ) |
| 24 | inss1 | |- ( Ring i^i U ) C_ Ring |
|
| 25 | 2 24 | eqsstrdi | |- ( ph -> R C_ Ring ) |
| 26 | xpss12 | |- ( ( R C_ Ring /\ R C_ Ring ) -> ( R X. R ) C_ ( Ring X. Ring ) ) |
|
| 27 | 25 25 26 | syl2anc | |- ( ph -> ( R X. R ) C_ ( Ring X. Ring ) ) |
| 28 | rhmfn | |- RingHom Fn ( Ring X. Ring ) |
|
| 29 | fnssresb | |- ( RingHom Fn ( Ring X. Ring ) -> ( ( RingHom |` ( R X. R ) ) Fn ( R X. R ) <-> ( R X. R ) C_ ( Ring X. Ring ) ) ) |
|
| 30 | 28 29 | mp1i | |- ( ph -> ( ( RingHom |` ( R X. R ) ) Fn ( R X. R ) <-> ( R X. R ) C_ ( Ring X. Ring ) ) ) |
| 31 | 27 30 | mpbird | |- ( ph -> ( RingHom |` ( R X. R ) ) Fn ( R X. R ) ) |
| 32 | inss1 | |- ( Rng i^i U ) C_ Rng |
|
| 33 | 3 32 | eqsstrdi | |- ( ph -> S C_ Rng ) |
| 34 | xpss12 | |- ( ( S C_ Rng /\ S C_ Rng ) -> ( S X. S ) C_ ( Rng X. Rng ) ) |
|
| 35 | 33 33 34 | syl2anc | |- ( ph -> ( S X. S ) C_ ( Rng X. Rng ) ) |
| 36 | rnghmfn | |- RngHom Fn ( Rng X. Rng ) |
|
| 37 | fnssresb | |- ( RngHom Fn ( Rng X. Rng ) -> ( ( RngHom |` ( S X. S ) ) Fn ( S X. S ) <-> ( S X. S ) C_ ( Rng X. Rng ) ) ) |
|
| 38 | 36 37 | mp1i | |- ( ph -> ( ( RngHom |` ( S X. S ) ) Fn ( S X. S ) <-> ( S X. S ) C_ ( Rng X. Rng ) ) ) |
| 39 | 35 38 | mpbird | |- ( ph -> ( RngHom |` ( S X. S ) ) Fn ( S X. S ) ) |
| 40 | incom | |- ( Rng i^i U ) = ( U i^i Rng ) |
|
| 41 | inex1g | |- ( U e. V -> ( U i^i Rng ) e. _V ) |
|
| 42 | 40 41 | eqeltrid | |- ( U e. V -> ( Rng i^i U ) e. _V ) |
| 43 | 1 42 | syl | |- ( ph -> ( Rng i^i U ) e. _V ) |
| 44 | 3 43 | eqeltrd | |- ( ph -> S e. _V ) |
| 45 | 31 39 44 | isssc | |- ( ph -> ( ( RingHom |` ( R X. R ) ) C_cat ( RngHom |` ( S X. S ) ) <-> ( R C_ S /\ A. x e. R A. y e. R ( x ( RingHom |` ( R X. R ) ) y ) C_ ( x ( RngHom |` ( S X. S ) ) y ) ) ) ) |
| 46 | 8 23 45 | mpbir2and | |- ( ph -> ( RingHom |` ( R X. R ) ) C_cat ( RngHom |` ( S X. S ) ) ) |