This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An element in the set of subcategories is a subset of the category. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | subcixp.1 | |- ( ph -> J e. ( Subcat ` C ) ) |
|
| subcssc.h | |- H = ( Homf ` C ) |
||
| Assertion | subcssc | |- ( ph -> J C_cat H ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subcixp.1 | |- ( ph -> J e. ( Subcat ` C ) ) |
|
| 2 | subcssc.h | |- H = ( Homf ` C ) |
|
| 3 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 4 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 5 | subcrcl | |- ( J e. ( Subcat ` C ) -> C e. Cat ) |
|
| 6 | 1 5 | syl | |- ( ph -> C e. Cat ) |
| 7 | eqidd | |- ( ph -> dom dom J = dom dom J ) |
|
| 8 | 2 3 4 6 7 | issubc | |- ( ph -> ( J e. ( Subcat ` C ) <-> ( J C_cat H /\ A. x e. dom dom J ( ( ( Id ` C ) ` x ) e. ( x J x ) /\ A. y e. dom dom J A. z e. dom dom J A. f e. ( x J y ) A. g e. ( y J z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x J z ) ) ) ) ) |
| 9 | 1 8 | mpbid | |- ( ph -> ( J C_cat H /\ A. x e. dom dom J ( ( ( Id ` C ) ` x ) e. ( x J x ) /\ A. y e. dom dom J A. z e. dom dom J A. f e. ( x J y ) A. g e. ( y J z ) ( g ( <. x , y >. ( comp ` C ) z ) f ) e. ( x J z ) ) ) ) |
| 10 | 9 | simpld | |- ( ph -> J C_cat H ) |