This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rhmimasubrng : Modified part of mhmima . (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 16-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rhmimasubrnglem.b | |- M = ( mulGrp ` R ) |
|
| Assertion | rhmimasubrnglem | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` N ) y ) e. ( F " X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmimasubrnglem.b | |- M = ( mulGrp ` R ) |
|
| 2 | simpll | |- ( ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) /\ ( z e. X /\ x e. X ) ) -> F e. ( M MndHom N ) ) |
|
| 3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 4 | 3 | subrngss | |- ( X e. ( SubRng ` R ) -> X C_ ( Base ` R ) ) |
| 5 | 1 3 | mgpbas | |- ( Base ` R ) = ( Base ` M ) |
| 6 | 4 5 | sseqtrdi | |- ( X e. ( SubRng ` R ) -> X C_ ( Base ` M ) ) |
| 7 | 6 | adantl | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) -> X C_ ( Base ` M ) ) |
| 8 | 7 | adantr | |- ( ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) /\ ( z e. X /\ x e. X ) ) -> X C_ ( Base ` M ) ) |
| 9 | simprl | |- ( ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) /\ ( z e. X /\ x e. X ) ) -> z e. X ) |
|
| 10 | 8 9 | sseldd | |- ( ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) /\ ( z e. X /\ x e. X ) ) -> z e. ( Base ` M ) ) |
| 11 | simprr | |- ( ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) /\ ( z e. X /\ x e. X ) ) -> x e. X ) |
|
| 12 | 8 11 | sseldd | |- ( ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) /\ ( z e. X /\ x e. X ) ) -> x e. ( Base ` M ) ) |
| 13 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 14 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 15 | eqid | |- ( +g ` N ) = ( +g ` N ) |
|
| 16 | 13 14 15 | mhmlin | |- ( ( F e. ( M MndHom N ) /\ z e. ( Base ` M ) /\ x e. ( Base ` M ) ) -> ( F ` ( z ( +g ` M ) x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) |
| 17 | 2 10 12 16 | syl3anc | |- ( ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) /\ ( z e. X /\ x e. X ) ) -> ( F ` ( z ( +g ` M ) x ) ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) |
| 18 | eqid | |- ( Base ` N ) = ( Base ` N ) |
|
| 19 | 13 18 | mhmf | |- ( F e. ( M MndHom N ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 20 | 19 | adantr | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 21 | 20 | ffnd | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) -> F Fn ( Base ` M ) ) |
| 22 | 21 | adantr | |- ( ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) /\ ( z e. X /\ x e. X ) ) -> F Fn ( Base ` M ) ) |
| 23 | eqid | |- ( .r ` R ) = ( .r ` R ) |
|
| 24 | 1 23 | mgpplusg | |- ( .r ` R ) = ( +g ` M ) |
| 25 | 24 | eqcomi | |- ( +g ` M ) = ( .r ` R ) |
| 26 | 25 | subrngmcl | |- ( ( X e. ( SubRng ` R ) /\ z e. X /\ x e. X ) -> ( z ( +g ` M ) x ) e. X ) |
| 27 | 26 | 3expb | |- ( ( X e. ( SubRng ` R ) /\ ( z e. X /\ x e. X ) ) -> ( z ( +g ` M ) x ) e. X ) |
| 28 | 27 | adantll | |- ( ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) /\ ( z e. X /\ x e. X ) ) -> ( z ( +g ` M ) x ) e. X ) |
| 29 | fnfvima | |- ( ( F Fn ( Base ` M ) /\ X C_ ( Base ` M ) /\ ( z ( +g ` M ) x ) e. X ) -> ( F ` ( z ( +g ` M ) x ) ) e. ( F " X ) ) |
|
| 30 | 22 8 28 29 | syl3anc | |- ( ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) /\ ( z e. X /\ x e. X ) ) -> ( F ` ( z ( +g ` M ) x ) ) e. ( F " X ) ) |
| 31 | 17 30 | eqeltrrd | |- ( ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) /\ ( z e. X /\ x e. X ) ) -> ( ( F ` z ) ( +g ` N ) ( F ` x ) ) e. ( F " X ) ) |
| 32 | 31 | anassrs | |- ( ( ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) /\ z e. X ) /\ x e. X ) -> ( ( F ` z ) ( +g ` N ) ( F ` x ) ) e. ( F " X ) ) |
| 33 | 32 | ralrimiva | |- ( ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) /\ z e. X ) -> A. x e. X ( ( F ` z ) ( +g ` N ) ( F ` x ) ) e. ( F " X ) ) |
| 34 | oveq2 | |- ( y = ( F ` x ) -> ( ( F ` z ) ( +g ` N ) y ) = ( ( F ` z ) ( +g ` N ) ( F ` x ) ) ) |
|
| 35 | 34 | eleq1d | |- ( y = ( F ` x ) -> ( ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) <-> ( ( F ` z ) ( +g ` N ) ( F ` x ) ) e. ( F " X ) ) ) |
| 36 | 35 | ralima | |- ( ( F Fn ( Base ` M ) /\ X C_ ( Base ` M ) ) -> ( A. y e. ( F " X ) ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) <-> A. x e. X ( ( F ` z ) ( +g ` N ) ( F ` x ) ) e. ( F " X ) ) ) |
| 37 | 21 7 36 | syl2anc | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) -> ( A. y e. ( F " X ) ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) <-> A. x e. X ( ( F ` z ) ( +g ` N ) ( F ` x ) ) e. ( F " X ) ) ) |
| 38 | 37 | adantr | |- ( ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) /\ z e. X ) -> ( A. y e. ( F " X ) ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) <-> A. x e. X ( ( F ` z ) ( +g ` N ) ( F ` x ) ) e. ( F " X ) ) ) |
| 39 | 33 38 | mpbird | |- ( ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) /\ z e. X ) -> A. y e. ( F " X ) ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) ) |
| 40 | 39 | ralrimiva | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) -> A. z e. X A. y e. ( F " X ) ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) ) |
| 41 | oveq1 | |- ( x = ( F ` z ) -> ( x ( +g ` N ) y ) = ( ( F ` z ) ( +g ` N ) y ) ) |
|
| 42 | 41 | eleq1d | |- ( x = ( F ` z ) -> ( ( x ( +g ` N ) y ) e. ( F " X ) <-> ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) ) ) |
| 43 | 42 | ralbidv | |- ( x = ( F ` z ) -> ( A. y e. ( F " X ) ( x ( +g ` N ) y ) e. ( F " X ) <-> A. y e. ( F " X ) ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) ) ) |
| 44 | 43 | ralima | |- ( ( F Fn ( Base ` M ) /\ X C_ ( Base ` M ) ) -> ( A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` N ) y ) e. ( F " X ) <-> A. z e. X A. y e. ( F " X ) ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) ) ) |
| 45 | 21 7 44 | syl2anc | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) -> ( A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` N ) y ) e. ( F " X ) <-> A. z e. X A. y e. ( F " X ) ( ( F ` z ) ( +g ` N ) y ) e. ( F " X ) ) ) |
| 46 | 40 45 | mpbird | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubRng ` R ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` N ) y ) e. ( F " X ) ) |