This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The homomorphic image of a subring is a subring. (Contributed by AV, 16-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rhmimasubrng | |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> ( F " X ) e. ( SubRng ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmghm | |- ( F e. ( M RingHom N ) -> F e. ( M GrpHom N ) ) |
|
| 2 | subrngsubg | |- ( X e. ( SubRng ` M ) -> X e. ( SubGrp ` M ) ) |
|
| 3 | ghmima | |- ( ( F e. ( M GrpHom N ) /\ X e. ( SubGrp ` M ) ) -> ( F " X ) e. ( SubGrp ` N ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> ( F " X ) e. ( SubGrp ` N ) ) |
| 5 | eqid | |- ( mulGrp ` M ) = ( mulGrp ` M ) |
|
| 6 | eqid | |- ( mulGrp ` N ) = ( mulGrp ` N ) |
|
| 7 | 5 6 | rhmmhm | |- ( F e. ( M RingHom N ) -> F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) ) |
| 8 | simpl | |- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) ) |
|
| 9 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 10 | 5 9 | mgpbas | |- ( Base ` M ) = ( Base ` ( mulGrp ` M ) ) |
| 11 | 10 | eqcomi | |- ( Base ` ( mulGrp ` M ) ) = ( Base ` M ) |
| 12 | 11 | subrngss | |- ( X e. ( SubRng ` M ) -> X C_ ( Base ` ( mulGrp ` M ) ) ) |
| 13 | 12 | adantl | |- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> X C_ ( Base ` ( mulGrp ` M ) ) ) |
| 14 | eqidd | |- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> ( +g ` ( mulGrp ` M ) ) = ( +g ` ( mulGrp ` M ) ) ) |
|
| 15 | eqidd | |- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> ( +g ` ( mulGrp ` N ) ) = ( +g ` ( mulGrp ` N ) ) ) |
|
| 16 | eqid | |- ( .r ` M ) = ( .r ` M ) |
|
| 17 | 5 16 | mgpplusg | |- ( .r ` M ) = ( +g ` ( mulGrp ` M ) ) |
| 18 | 17 | eqcomi | |- ( +g ` ( mulGrp ` M ) ) = ( .r ` M ) |
| 19 | 18 | subrngmcl | |- ( ( X e. ( SubRng ` M ) /\ z e. X /\ x e. X ) -> ( z ( +g ` ( mulGrp ` M ) ) x ) e. X ) |
| 20 | 19 | 3adant1l | |- ( ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) /\ z e. X /\ x e. X ) -> ( z ( +g ` ( mulGrp ` M ) ) x ) e. X ) |
| 21 | 8 13 14 15 20 | mhmimalem | |- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` ( mulGrp ` N ) ) y ) e. ( F " X ) ) |
| 22 | eqid | |- ( .r ` N ) = ( .r ` N ) |
|
| 23 | 6 22 | mgpplusg | |- ( .r ` N ) = ( +g ` ( mulGrp ` N ) ) |
| 24 | 23 | eqcomi | |- ( +g ` ( mulGrp ` N ) ) = ( .r ` N ) |
| 25 | 24 | oveqi | |- ( x ( +g ` ( mulGrp ` N ) ) y ) = ( x ( .r ` N ) y ) |
| 26 | 25 | eleq1i | |- ( ( x ( +g ` ( mulGrp ` N ) ) y ) e. ( F " X ) <-> ( x ( .r ` N ) y ) e. ( F " X ) ) |
| 27 | 26 | 2ralbii | |- ( A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` ( mulGrp ` N ) ) y ) e. ( F " X ) <-> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) |
| 28 | 21 27 | sylib | |- ( ( F e. ( ( mulGrp ` M ) MndHom ( mulGrp ` N ) ) /\ X e. ( SubRng ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) |
| 29 | 7 28 | sylan | |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) |
| 30 | rhmrcl2 | |- ( F e. ( M RingHom N ) -> N e. Ring ) |
|
| 31 | ringrng | |- ( N e. Ring -> N e. Rng ) |
|
| 32 | 30 31 | syl | |- ( F e. ( M RingHom N ) -> N e. Rng ) |
| 33 | 32 | adantr | |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> N e. Rng ) |
| 34 | eqid | |- ( Base ` N ) = ( Base ` N ) |
|
| 35 | 34 22 | issubrng2 | |- ( N e. Rng -> ( ( F " X ) e. ( SubRng ` N ) <-> ( ( F " X ) e. ( SubGrp ` N ) /\ A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) ) ) |
| 36 | 33 35 | syl | |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> ( ( F " X ) e. ( SubRng ` N ) <-> ( ( F " X ) e. ( SubGrp ` N ) /\ A. x e. ( F " X ) A. y e. ( F " X ) ( x ( .r ` N ) y ) e. ( F " X ) ) ) ) |
| 37 | 4 29 36 | mpbir2and | |- ( ( F e. ( M RingHom N ) /\ X e. ( SubRng ` M ) ) -> ( F " X ) e. ( SubRng ` N ) ) |