This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for rhmimasubrng : Modified part of mhmima . (Contributed by Mario Carneiro, 10-Mar-2015) (Revised by AV, 16-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rhmimasubrnglem.b | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| Assertion | rhmimasubrnglem | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) → ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmimasubrnglem.b | ⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) | |
| 2 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 4 | 3 | subrngss | ⊢ ( 𝑋 ∈ ( SubRng ‘ 𝑅 ) → 𝑋 ⊆ ( Base ‘ 𝑅 ) ) |
| 5 | 1 3 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
| 6 | 4 5 | sseqtrdi | ⊢ ( 𝑋 ∈ ( SubRng ‘ 𝑅 ) → 𝑋 ⊆ ( Base ‘ 𝑀 ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) → 𝑋 ⊆ ( Base ‘ 𝑀 ) ) |
| 8 | 7 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑋 ⊆ ( Base ‘ 𝑀 ) ) |
| 9 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑧 ∈ 𝑋 ) | |
| 10 | 8 9 | sseldd | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑧 ∈ ( Base ‘ 𝑀 ) ) |
| 11 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) | |
| 12 | 8 11 | sseldd | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝑥 ∈ ( Base ‘ 𝑀 ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 14 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 15 | eqid | ⊢ ( +g ‘ 𝑁 ) = ( +g ‘ 𝑁 ) | |
| 16 | 13 14 15 | mhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑧 ∈ ( Base ‘ 𝑀 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 17 | 2 10 12 16 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) |
| 18 | eqid | ⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) | |
| 19 | 13 18 | mhmf | ⊢ ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 21 | 20 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) → 𝐹 Fn ( Base ‘ 𝑀 ) ) |
| 22 | 21 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → 𝐹 Fn ( Base ‘ 𝑀 ) ) |
| 23 | eqid | ⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) | |
| 24 | 1 23 | mgpplusg | ⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
| 25 | 24 | eqcomi | ⊢ ( +g ‘ 𝑀 ) = ( .r ‘ 𝑅 ) |
| 26 | 25 | subrngmcl | ⊢ ( ( 𝑋 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ∈ 𝑋 ) |
| 27 | 26 | 3expb | ⊢ ( ( 𝑋 ∈ ( SubRng ‘ 𝑅 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ∈ 𝑋 ) |
| 28 | 27 | adantll | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ∈ 𝑋 ) |
| 29 | fnfvima | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑀 ) ∧ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) | |
| 30 | 22 8 28 29 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( 𝐹 ‘ ( 𝑧 ( +g ‘ 𝑀 ) 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 31 | 17 30 | eqeltrrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑥 ∈ 𝑋 ) ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 32 | 31 | anassrs | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ 𝑧 ∈ 𝑋 ) ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 33 | 32 | ralrimiva | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ 𝑧 ∈ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 34 | oveq2 | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ) | |
| 35 | 34 | eleq1d | ⊢ ( 𝑦 = ( 𝐹 ‘ 𝑥 ) → ( ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 36 | 35 | ralima | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑀 ) ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 37 | 21 7 36 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 38 | 37 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ 𝑧 ∈ 𝑋 ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑥 ∈ 𝑋 ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) ( 𝐹 ‘ 𝑥 ) ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 39 | 33 38 | mpbird | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) ∧ 𝑧 ∈ 𝑋 ) → ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 40 | 39 | ralrimiva | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) → ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |
| 41 | oveq1 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) = ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ) | |
| 42 | 41 | eleq1d | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 43 | 42 | ralbidv | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑧 ) → ( ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 44 | 43 | ralima | ⊢ ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝑋 ⊆ ( Base ‘ 𝑀 ) ) → ( ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 45 | 21 7 44 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) → ( ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ↔ ∀ 𝑧 ∈ 𝑋 ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( ( 𝐹 ‘ 𝑧 ) ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) ) |
| 46 | 40 45 | mpbird | ⊢ ( ( 𝐹 ∈ ( 𝑀 MndHom 𝑁 ) ∧ 𝑋 ∈ ( SubRng ‘ 𝑅 ) ) → ∀ 𝑥 ∈ ( 𝐹 “ 𝑋 ) ∀ 𝑦 ∈ ( 𝐹 “ 𝑋 ) ( 𝑥 ( +g ‘ 𝑁 ) 𝑦 ) ∈ ( 𝐹 “ 𝑋 ) ) |