This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015) (Proof shortened by AV, 8-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mhmima | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( F " X ) e. ( SubMnd ` N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imassrn | |- ( F " X ) C_ ran F |
|
| 2 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 3 | eqid | |- ( Base ` N ) = ( Base ` N ) |
|
| 4 | 2 3 | mhmf | |- ( F e. ( M MndHom N ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 5 | 4 | adantr | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 6 | 5 | frnd | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ran F C_ ( Base ` N ) ) |
| 7 | 1 6 | sstrid | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( F " X ) C_ ( Base ` N ) ) |
| 8 | eqid | |- ( 0g ` M ) = ( 0g ` M ) |
|
| 9 | eqid | |- ( 0g ` N ) = ( 0g ` N ) |
|
| 10 | 8 9 | mhm0 | |- ( F e. ( M MndHom N ) -> ( F ` ( 0g ` M ) ) = ( 0g ` N ) ) |
| 11 | 10 | adantr | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( F ` ( 0g ` M ) ) = ( 0g ` N ) ) |
| 12 | 5 | ffnd | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> F Fn ( Base ` M ) ) |
| 13 | 2 | submss | |- ( X e. ( SubMnd ` M ) -> X C_ ( Base ` M ) ) |
| 14 | 13 | adantl | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> X C_ ( Base ` M ) ) |
| 15 | 8 | subm0cl | |- ( X e. ( SubMnd ` M ) -> ( 0g ` M ) e. X ) |
| 16 | 15 | adantl | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( 0g ` M ) e. X ) |
| 17 | fnfvima | |- ( ( F Fn ( Base ` M ) /\ X C_ ( Base ` M ) /\ ( 0g ` M ) e. X ) -> ( F ` ( 0g ` M ) ) e. ( F " X ) ) |
|
| 18 | 12 14 16 17 | syl3anc | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( F ` ( 0g ` M ) ) e. ( F " X ) ) |
| 19 | 11 18 | eqeltrrd | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( 0g ` N ) e. ( F " X ) ) |
| 20 | simpl | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> F e. ( M MndHom N ) ) |
|
| 21 | eqidd | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( +g ` M ) = ( +g ` M ) ) |
|
| 22 | eqidd | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( +g ` N ) = ( +g ` N ) ) |
|
| 23 | eqid | |- ( +g ` M ) = ( +g ` M ) |
|
| 24 | 23 | submcl | |- ( ( X e. ( SubMnd ` M ) /\ z e. X /\ x e. X ) -> ( z ( +g ` M ) x ) e. X ) |
| 25 | 24 | 3adant1l | |- ( ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) /\ z e. X /\ x e. X ) -> ( z ( +g ` M ) x ) e. X ) |
| 26 | 20 14 21 22 25 | mhmimalem | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` N ) y ) e. ( F " X ) ) |
| 27 | mhmrcl2 | |- ( F e. ( M MndHom N ) -> N e. Mnd ) |
|
| 28 | 27 | adantr | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> N e. Mnd ) |
| 29 | eqid | |- ( +g ` N ) = ( +g ` N ) |
|
| 30 | 3 9 29 | issubm | |- ( N e. Mnd -> ( ( F " X ) e. ( SubMnd ` N ) <-> ( ( F " X ) C_ ( Base ` N ) /\ ( 0g ` N ) e. ( F " X ) /\ A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` N ) y ) e. ( F " X ) ) ) ) |
| 31 | 28 30 | syl | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( ( F " X ) e. ( SubMnd ` N ) <-> ( ( F " X ) C_ ( Base ` N ) /\ ( 0g ` N ) e. ( F " X ) /\ A. x e. ( F " X ) A. y e. ( F " X ) ( x ( +g ` N ) y ) e. ( F " X ) ) ) ) |
| 32 | 7 19 26 31 | mpbir3and | |- ( ( F e. ( M MndHom N ) /\ X e. ( SubMnd ` M ) ) -> ( F " X ) e. ( SubMnd ` N ) ) |