This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition of subspaces. (Contributed by Mario Carneiro, 15-Dec-2013) (Revised by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restco | |- ( ( J e. V /\ A e. W /\ B e. X ) -> ( ( J |`t A ) |`t B ) = ( J |`t ( A i^i B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- y e. _V |
|
| 2 | 1 | inex1 | |- ( y i^i A ) e. _V |
| 3 | ineq1 | |- ( x = ( y i^i A ) -> ( x i^i B ) = ( ( y i^i A ) i^i B ) ) |
|
| 4 | inass | |- ( ( y i^i A ) i^i B ) = ( y i^i ( A i^i B ) ) |
|
| 5 | 3 4 | eqtrdi | |- ( x = ( y i^i A ) -> ( x i^i B ) = ( y i^i ( A i^i B ) ) ) |
| 6 | 2 5 | abrexco | |- { z | E. x e. { w | E. y e. J w = ( y i^i A ) } z = ( x i^i B ) } = { z | E. y e. J z = ( y i^i ( A i^i B ) ) } |
| 7 | eqid | |- ( y e. J |-> ( y i^i A ) ) = ( y e. J |-> ( y i^i A ) ) |
|
| 8 | 7 | rnmpt | |- ran ( y e. J |-> ( y i^i A ) ) = { w | E. y e. J w = ( y i^i A ) } |
| 9 | 8 | mpteq1i | |- ( x e. ran ( y e. J |-> ( y i^i A ) ) |-> ( x i^i B ) ) = ( x e. { w | E. y e. J w = ( y i^i A ) } |-> ( x i^i B ) ) |
| 10 | 9 | rnmpt | |- ran ( x e. ran ( y e. J |-> ( y i^i A ) ) |-> ( x i^i B ) ) = { z | E. x e. { w | E. y e. J w = ( y i^i A ) } z = ( x i^i B ) } |
| 11 | eqid | |- ( y e. J |-> ( y i^i ( A i^i B ) ) ) = ( y e. J |-> ( y i^i ( A i^i B ) ) ) |
|
| 12 | 11 | rnmpt | |- ran ( y e. J |-> ( y i^i ( A i^i B ) ) ) = { z | E. y e. J z = ( y i^i ( A i^i B ) ) } |
| 13 | 6 10 12 | 3eqtr4i | |- ran ( x e. ran ( y e. J |-> ( y i^i A ) ) |-> ( x i^i B ) ) = ran ( y e. J |-> ( y i^i ( A i^i B ) ) ) |
| 14 | restval | |- ( ( J e. V /\ A e. W ) -> ( J |`t A ) = ran ( y e. J |-> ( y i^i A ) ) ) |
|
| 15 | 14 | 3adant3 | |- ( ( J e. V /\ A e. W /\ B e. X ) -> ( J |`t A ) = ran ( y e. J |-> ( y i^i A ) ) ) |
| 16 | 15 | oveq1d | |- ( ( J e. V /\ A e. W /\ B e. X ) -> ( ( J |`t A ) |`t B ) = ( ran ( y e. J |-> ( y i^i A ) ) |`t B ) ) |
| 17 | ovex | |- ( J |`t A ) e. _V |
|
| 18 | 15 17 | eqeltrrdi | |- ( ( J e. V /\ A e. W /\ B e. X ) -> ran ( y e. J |-> ( y i^i A ) ) e. _V ) |
| 19 | simp3 | |- ( ( J e. V /\ A e. W /\ B e. X ) -> B e. X ) |
|
| 20 | restval | |- ( ( ran ( y e. J |-> ( y i^i A ) ) e. _V /\ B e. X ) -> ( ran ( y e. J |-> ( y i^i A ) ) |`t B ) = ran ( x e. ran ( y e. J |-> ( y i^i A ) ) |-> ( x i^i B ) ) ) |
|
| 21 | 18 19 20 | syl2anc | |- ( ( J e. V /\ A e. W /\ B e. X ) -> ( ran ( y e. J |-> ( y i^i A ) ) |`t B ) = ran ( x e. ran ( y e. J |-> ( y i^i A ) ) |-> ( x i^i B ) ) ) |
| 22 | 16 21 | eqtrd | |- ( ( J e. V /\ A e. W /\ B e. X ) -> ( ( J |`t A ) |`t B ) = ran ( x e. ran ( y e. J |-> ( y i^i A ) ) |-> ( x i^i B ) ) ) |
| 23 | simp1 | |- ( ( J e. V /\ A e. W /\ B e. X ) -> J e. V ) |
|
| 24 | inex1g | |- ( A e. W -> ( A i^i B ) e. _V ) |
|
| 25 | 24 | 3ad2ant2 | |- ( ( J e. V /\ A e. W /\ B e. X ) -> ( A i^i B ) e. _V ) |
| 26 | restval | |- ( ( J e. V /\ ( A i^i B ) e. _V ) -> ( J |`t ( A i^i B ) ) = ran ( y e. J |-> ( y i^i ( A i^i B ) ) ) ) |
|
| 27 | 23 25 26 | syl2anc | |- ( ( J e. V /\ A e. W /\ B e. X ) -> ( J |`t ( A i^i B ) ) = ran ( y e. J |-> ( y i^i ( A i^i B ) ) ) ) |
| 28 | 13 22 27 | 3eqtr4a | |- ( ( J e. V /\ A e. W /\ B e. X ) -> ( ( J |`t A ) |`t B ) = ( J |`t ( A i^i B ) ) ) |