This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Associative law for intersection of classes. Exercise 9 of TakeutiZaring p. 17. (Contributed by NM, 3-May-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | inass | |- ( ( A i^i B ) i^i C ) = ( A i^i ( B i^i C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | anass | |- ( ( ( x e. A /\ x e. B ) /\ x e. C ) <-> ( x e. A /\ ( x e. B /\ x e. C ) ) ) |
|
| 2 | elin | |- ( x e. ( B i^i C ) <-> ( x e. B /\ x e. C ) ) |
|
| 3 | 2 | anbi2i | |- ( ( x e. A /\ x e. ( B i^i C ) ) <-> ( x e. A /\ ( x e. B /\ x e. C ) ) ) |
| 4 | 1 3 | bitr4i | |- ( ( ( x e. A /\ x e. B ) /\ x e. C ) <-> ( x e. A /\ x e. ( B i^i C ) ) ) |
| 5 | elin | |- ( x e. ( A i^i B ) <-> ( x e. A /\ x e. B ) ) |
|
| 6 | 5 | anbi1i | |- ( ( x e. ( A i^i B ) /\ x e. C ) <-> ( ( x e. A /\ x e. B ) /\ x e. C ) ) |
| 7 | elin | |- ( x e. ( A i^i ( B i^i C ) ) <-> ( x e. A /\ x e. ( B i^i C ) ) ) |
|
| 8 | 4 6 7 | 3bitr4i | |- ( ( x e. ( A i^i B ) /\ x e. C ) <-> x e. ( A i^i ( B i^i C ) ) ) |
| 9 | 8 | ineqri | |- ( ( A i^i B ) i^i C ) = ( A i^i ( B i^i C ) ) |