This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a product metric. (Contributed by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressprdsds.y | |- ( ph -> Y = ( S Xs_ ( x e. I |-> R ) ) ) |
|
| ressprdsds.h | |- ( ph -> H = ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) |
||
| ressprdsds.b | |- B = ( Base ` H ) |
||
| ressprdsds.d | |- D = ( dist ` Y ) |
||
| ressprdsds.e | |- E = ( dist ` H ) |
||
| ressprdsds.s | |- ( ph -> S e. U ) |
||
| ressprdsds.t | |- ( ph -> T e. V ) |
||
| ressprdsds.i | |- ( ph -> I e. W ) |
||
| ressprdsds.r | |- ( ( ph /\ x e. I ) -> R e. X ) |
||
| ressprdsds.a | |- ( ( ph /\ x e. I ) -> A e. Z ) |
||
| Assertion | ressprdsds | |- ( ph -> E = ( D |` ( B X. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressprdsds.y | |- ( ph -> Y = ( S Xs_ ( x e. I |-> R ) ) ) |
|
| 2 | ressprdsds.h | |- ( ph -> H = ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) |
|
| 3 | ressprdsds.b | |- B = ( Base ` H ) |
|
| 4 | ressprdsds.d | |- D = ( dist ` Y ) |
|
| 5 | ressprdsds.e | |- E = ( dist ` H ) |
|
| 6 | ressprdsds.s | |- ( ph -> S e. U ) |
|
| 7 | ressprdsds.t | |- ( ph -> T e. V ) |
|
| 8 | ressprdsds.i | |- ( ph -> I e. W ) |
|
| 9 | ressprdsds.r | |- ( ( ph /\ x e. I ) -> R e. X ) |
|
| 10 | ressprdsds.a | |- ( ( ph /\ x e. I ) -> A e. Z ) |
|
| 11 | ovres | |- ( ( f e. B /\ g e. B ) -> ( f ( D |` ( B X. B ) ) g ) = ( f D g ) ) |
|
| 12 | 11 | adantl | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( f ( D |` ( B X. B ) ) g ) = ( f D g ) ) |
| 13 | eqid | |- ( R |`s A ) = ( R |`s A ) |
|
| 14 | eqid | |- ( dist ` R ) = ( dist ` R ) |
|
| 15 | 13 14 | ressds | |- ( A e. Z -> ( dist ` R ) = ( dist ` ( R |`s A ) ) ) |
| 16 | 10 15 | syl | |- ( ( ph /\ x e. I ) -> ( dist ` R ) = ( dist ` ( R |`s A ) ) ) |
| 17 | 16 | oveqd | |- ( ( ph /\ x e. I ) -> ( ( f ` x ) ( dist ` R ) ( g ` x ) ) = ( ( f ` x ) ( dist ` ( R |`s A ) ) ( g ` x ) ) ) |
| 18 | 17 | mpteq2dva | |- ( ph -> ( x e. I |-> ( ( f ` x ) ( dist ` R ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( dist ` ( R |`s A ) ) ( g ` x ) ) ) ) |
| 19 | 18 | adantr | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( x e. I |-> ( ( f ` x ) ( dist ` R ) ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( dist ` ( R |`s A ) ) ( g ` x ) ) ) ) |
| 20 | 19 | rneqd | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ran ( x e. I |-> ( ( f ` x ) ( dist ` R ) ( g ` x ) ) ) = ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R |`s A ) ) ( g ` x ) ) ) ) |
| 21 | 20 | uneq1d | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( ran ( x e. I |-> ( ( f ` x ) ( dist ` R ) ( g ` x ) ) ) u. { 0 } ) = ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R |`s A ) ) ( g ` x ) ) ) u. { 0 } ) ) |
| 22 | 21 | supeq1d | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` R ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) = sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R |`s A ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
| 23 | eqid | |- ( S Xs_ ( x e. I |-> R ) ) = ( S Xs_ ( x e. I |-> R ) ) |
|
| 24 | eqid | |- ( Base ` ( S Xs_ ( x e. I |-> R ) ) ) = ( Base ` ( S Xs_ ( x e. I |-> R ) ) ) |
|
| 25 | 6 | adantr | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> S e. U ) |
| 26 | 8 | adantr | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> I e. W ) |
| 27 | 9 | ralrimiva | |- ( ph -> A. x e. I R e. X ) |
| 28 | 27 | adantr | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> A. x e. I R e. X ) |
| 29 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 30 | 13 29 | ressbasss | |- ( Base ` ( R |`s A ) ) C_ ( Base ` R ) |
| 31 | 30 | a1i | |- ( ( ph /\ x e. I ) -> ( Base ` ( R |`s A ) ) C_ ( Base ` R ) ) |
| 32 | 31 | ralrimiva | |- ( ph -> A. x e. I ( Base ` ( R |`s A ) ) C_ ( Base ` R ) ) |
| 33 | ss2ixp | |- ( A. x e. I ( Base ` ( R |`s A ) ) C_ ( Base ` R ) -> X_ x e. I ( Base ` ( R |`s A ) ) C_ X_ x e. I ( Base ` R ) ) |
|
| 34 | 32 33 | syl | |- ( ph -> X_ x e. I ( Base ` ( R |`s A ) ) C_ X_ x e. I ( Base ` R ) ) |
| 35 | eqid | |- ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) = ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) |
|
| 36 | eqid | |- ( Base ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) = ( Base ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) |
|
| 37 | ovex | |- ( R |`s A ) e. _V |
|
| 38 | 37 | rgenw | |- A. x e. I ( R |`s A ) e. _V |
| 39 | 38 | a1i | |- ( ph -> A. x e. I ( R |`s A ) e. _V ) |
| 40 | eqid | |- ( Base ` ( R |`s A ) ) = ( Base ` ( R |`s A ) ) |
|
| 41 | 35 36 7 8 39 40 | prdsbas3 | |- ( ph -> ( Base ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) = X_ x e. I ( Base ` ( R |`s A ) ) ) |
| 42 | 23 24 6 8 27 29 | prdsbas3 | |- ( ph -> ( Base ` ( S Xs_ ( x e. I |-> R ) ) ) = X_ x e. I ( Base ` R ) ) |
| 43 | 34 41 42 | 3sstr4d | |- ( ph -> ( Base ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) C_ ( Base ` ( S Xs_ ( x e. I |-> R ) ) ) ) |
| 44 | 2 | fveq2d | |- ( ph -> ( Base ` H ) = ( Base ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) ) |
| 45 | 3 44 | eqtrid | |- ( ph -> B = ( Base ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) ) |
| 46 | 1 | fveq2d | |- ( ph -> ( Base ` Y ) = ( Base ` ( S Xs_ ( x e. I |-> R ) ) ) ) |
| 47 | 43 45 46 | 3sstr4d | |- ( ph -> B C_ ( Base ` Y ) ) |
| 48 | 47 | adantr | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> B C_ ( Base ` Y ) ) |
| 49 | 46 | adantr | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( Base ` Y ) = ( Base ` ( S Xs_ ( x e. I |-> R ) ) ) ) |
| 50 | 48 49 | sseqtrd | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> B C_ ( Base ` ( S Xs_ ( x e. I |-> R ) ) ) ) |
| 51 | simprl | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> f e. B ) |
|
| 52 | 50 51 | sseldd | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> f e. ( Base ` ( S Xs_ ( x e. I |-> R ) ) ) ) |
| 53 | simprr | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> g e. B ) |
|
| 54 | 50 53 | sseldd | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> g e. ( Base ` ( S Xs_ ( x e. I |-> R ) ) ) ) |
| 55 | eqid | |- ( dist ` ( S Xs_ ( x e. I |-> R ) ) ) = ( dist ` ( S Xs_ ( x e. I |-> R ) ) ) |
|
| 56 | 23 24 25 26 28 52 54 14 55 | prdsdsval2 | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( f ( dist ` ( S Xs_ ( x e. I |-> R ) ) ) g ) = sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` R ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
| 57 | 7 | adantr | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> T e. V ) |
| 58 | 38 | a1i | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> A. x e. I ( R |`s A ) e. _V ) |
| 59 | 45 | adantr | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> B = ( Base ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) ) |
| 60 | 51 59 | eleqtrd | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> f e. ( Base ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) ) |
| 61 | 53 59 | eleqtrd | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> g e. ( Base ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) ) |
| 62 | eqid | |- ( dist ` ( R |`s A ) ) = ( dist ` ( R |`s A ) ) |
|
| 63 | eqid | |- ( dist ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) = ( dist ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) |
|
| 64 | 35 36 57 26 58 60 61 62 63 | prdsdsval2 | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( f ( dist ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) g ) = sup ( ( ran ( x e. I |-> ( ( f ` x ) ( dist ` ( R |`s A ) ) ( g ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
| 65 | 22 56 64 | 3eqtr4d | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( f ( dist ` ( S Xs_ ( x e. I |-> R ) ) ) g ) = ( f ( dist ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) g ) ) |
| 66 | 1 | fveq2d | |- ( ph -> ( dist ` Y ) = ( dist ` ( S Xs_ ( x e. I |-> R ) ) ) ) |
| 67 | 4 66 | eqtrid | |- ( ph -> D = ( dist ` ( S Xs_ ( x e. I |-> R ) ) ) ) |
| 68 | 67 | oveqdr | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( f D g ) = ( f ( dist ` ( S Xs_ ( x e. I |-> R ) ) ) g ) ) |
| 69 | 2 | fveq2d | |- ( ph -> ( dist ` H ) = ( dist ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) ) |
| 70 | 5 69 | eqtrid | |- ( ph -> E = ( dist ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) ) |
| 71 | 70 | oveqdr | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( f E g ) = ( f ( dist ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) g ) ) |
| 72 | 65 68 71 | 3eqtr4d | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( f D g ) = ( f E g ) ) |
| 73 | 12 72 | eqtr2d | |- ( ( ph /\ ( f e. B /\ g e. B ) ) -> ( f E g ) = ( f ( D |` ( B X. B ) ) g ) ) |
| 74 | 73 | ralrimivva | |- ( ph -> A. f e. B A. g e. B ( f E g ) = ( f ( D |` ( B X. B ) ) g ) ) |
| 75 | 8 | mptexd | |- ( ph -> ( x e. I |-> ( R |`s A ) ) e. _V ) |
| 76 | eqid | |- ( x e. I |-> ( R |`s A ) ) = ( x e. I |-> ( R |`s A ) ) |
|
| 77 | 37 76 | dmmpti | |- dom ( x e. I |-> ( R |`s A ) ) = I |
| 78 | 77 | a1i | |- ( ph -> dom ( x e. I |-> ( R |`s A ) ) = I ) |
| 79 | 35 7 75 36 78 63 | prdsdsfn | |- ( ph -> ( dist ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) Fn ( ( Base ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) X. ( Base ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) ) ) |
| 80 | 45 | sqxpeqd | |- ( ph -> ( B X. B ) = ( ( Base ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) X. ( Base ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) ) ) |
| 81 | 70 80 | fneq12d | |- ( ph -> ( E Fn ( B X. B ) <-> ( dist ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) Fn ( ( Base ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) X. ( Base ` ( T Xs_ ( x e. I |-> ( R |`s A ) ) ) ) ) ) ) |
| 82 | 79 81 | mpbird | |- ( ph -> E Fn ( B X. B ) ) |
| 83 | 8 | mptexd | |- ( ph -> ( x e. I |-> R ) e. _V ) |
| 84 | dmmptg | |- ( A. x e. I R e. X -> dom ( x e. I |-> R ) = I ) |
|
| 85 | 27 84 | syl | |- ( ph -> dom ( x e. I |-> R ) = I ) |
| 86 | 23 6 83 24 85 55 | prdsdsfn | |- ( ph -> ( dist ` ( S Xs_ ( x e. I |-> R ) ) ) Fn ( ( Base ` ( S Xs_ ( x e. I |-> R ) ) ) X. ( Base ` ( S Xs_ ( x e. I |-> R ) ) ) ) ) |
| 87 | 46 | sqxpeqd | |- ( ph -> ( ( Base ` Y ) X. ( Base ` Y ) ) = ( ( Base ` ( S Xs_ ( x e. I |-> R ) ) ) X. ( Base ` ( S Xs_ ( x e. I |-> R ) ) ) ) ) |
| 88 | 67 87 | fneq12d | |- ( ph -> ( D Fn ( ( Base ` Y ) X. ( Base ` Y ) ) <-> ( dist ` ( S Xs_ ( x e. I |-> R ) ) ) Fn ( ( Base ` ( S Xs_ ( x e. I |-> R ) ) ) X. ( Base ` ( S Xs_ ( x e. I |-> R ) ) ) ) ) ) |
| 89 | 86 88 | mpbird | |- ( ph -> D Fn ( ( Base ` Y ) X. ( Base ` Y ) ) ) |
| 90 | xpss12 | |- ( ( B C_ ( Base ` Y ) /\ B C_ ( Base ` Y ) ) -> ( B X. B ) C_ ( ( Base ` Y ) X. ( Base ` Y ) ) ) |
|
| 91 | 47 47 90 | syl2anc | |- ( ph -> ( B X. B ) C_ ( ( Base ` Y ) X. ( Base ` Y ) ) ) |
| 92 | fnssres | |- ( ( D Fn ( ( Base ` Y ) X. ( Base ` Y ) ) /\ ( B X. B ) C_ ( ( Base ` Y ) X. ( Base ` Y ) ) ) -> ( D |` ( B X. B ) ) Fn ( B X. B ) ) |
|
| 93 | 89 91 92 | syl2anc | |- ( ph -> ( D |` ( B X. B ) ) Fn ( B X. B ) ) |
| 94 | eqfnov2 | |- ( ( E Fn ( B X. B ) /\ ( D |` ( B X. B ) ) Fn ( B X. B ) ) -> ( E = ( D |` ( B X. B ) ) <-> A. f e. B A. g e. B ( f E g ) = ( f ( D |` ( B X. B ) ) g ) ) ) |
|
| 95 | 82 93 94 | syl2anc | |- ( ph -> ( E = ( D |` ( B X. B ) ) <-> A. f e. B A. g e. B ( f E g ) = ( f ( D |` ( B X. B ) ) g ) ) ) |
| 96 | 74 95 | mpbird | |- ( ph -> E = ( D |` ( B X. B ) ) ) |