This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the metric in a structure product. (Contributed by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt2.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) |
|
| prdsbasmpt2.b | |- B = ( Base ` Y ) |
||
| prdsbasmpt2.s | |- ( ph -> S e. V ) |
||
| prdsbasmpt2.i | |- ( ph -> I e. W ) |
||
| prdsbasmpt2.r | |- ( ph -> A. x e. I R e. X ) |
||
| prdsdsval2.f | |- ( ph -> F e. B ) |
||
| prdsdsval2.g | |- ( ph -> G e. B ) |
||
| prdsdsval2.e | |- E = ( dist ` R ) |
||
| prdsdsval2.d | |- D = ( dist ` Y ) |
||
| Assertion | prdsdsval2 | |- ( ph -> ( F D G ) = sup ( ( ran ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt2.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) |
|
| 2 | prdsbasmpt2.b | |- B = ( Base ` Y ) |
|
| 3 | prdsbasmpt2.s | |- ( ph -> S e. V ) |
|
| 4 | prdsbasmpt2.i | |- ( ph -> I e. W ) |
|
| 5 | prdsbasmpt2.r | |- ( ph -> A. x e. I R e. X ) |
|
| 6 | prdsdsval2.f | |- ( ph -> F e. B ) |
|
| 7 | prdsdsval2.g | |- ( ph -> G e. B ) |
|
| 8 | prdsdsval2.e | |- E = ( dist ` R ) |
|
| 9 | prdsdsval2.d | |- D = ( dist ` Y ) |
|
| 10 | eqid | |- ( x e. I |-> R ) = ( x e. I |-> R ) |
|
| 11 | 10 | fnmpt | |- ( A. x e. I R e. X -> ( x e. I |-> R ) Fn I ) |
| 12 | 5 11 | syl | |- ( ph -> ( x e. I |-> R ) Fn I ) |
| 13 | 1 2 3 4 12 6 7 9 | prdsdsval | |- ( ph -> ( F D G ) = sup ( ( ran ( y e. I |-> ( ( F ` y ) ( dist ` ( ( x e. I |-> R ) ` y ) ) ( G ` y ) ) ) u. { 0 } ) , RR* , < ) ) |
| 14 | nfcv | |- F/_ x ( F ` y ) |
|
| 15 | nfcv | |- F/_ x dist |
|
| 16 | nffvmpt1 | |- F/_ x ( ( x e. I |-> R ) ` y ) |
|
| 17 | 15 16 | nffv | |- F/_ x ( dist ` ( ( x e. I |-> R ) ` y ) ) |
| 18 | nfcv | |- F/_ x ( G ` y ) |
|
| 19 | 14 17 18 | nfov | |- F/_ x ( ( F ` y ) ( dist ` ( ( x e. I |-> R ) ` y ) ) ( G ` y ) ) |
| 20 | nfcv | |- F/_ y ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) |
|
| 21 | 2fveq3 | |- ( y = x -> ( dist ` ( ( x e. I |-> R ) ` y ) ) = ( dist ` ( ( x e. I |-> R ) ` x ) ) ) |
|
| 22 | fveq2 | |- ( y = x -> ( F ` y ) = ( F ` x ) ) |
|
| 23 | fveq2 | |- ( y = x -> ( G ` y ) = ( G ` x ) ) |
|
| 24 | 21 22 23 | oveq123d | |- ( y = x -> ( ( F ` y ) ( dist ` ( ( x e. I |-> R ) ` y ) ) ( G ` y ) ) = ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) ) |
| 25 | 19 20 24 | cbvmpt | |- ( y e. I |-> ( ( F ` y ) ( dist ` ( ( x e. I |-> R ) ` y ) ) ( G ` y ) ) ) = ( x e. I |-> ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) ) |
| 26 | eqidd | |- ( ph -> I = I ) |
|
| 27 | 10 | fvmpt2 | |- ( ( x e. I /\ R e. X ) -> ( ( x e. I |-> R ) ` x ) = R ) |
| 28 | 27 | fveq2d | |- ( ( x e. I /\ R e. X ) -> ( dist ` ( ( x e. I |-> R ) ` x ) ) = ( dist ` R ) ) |
| 29 | 28 8 | eqtr4di | |- ( ( x e. I /\ R e. X ) -> ( dist ` ( ( x e. I |-> R ) ` x ) ) = E ) |
| 30 | 29 | oveqd | |- ( ( x e. I /\ R e. X ) -> ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) = ( ( F ` x ) E ( G ` x ) ) ) |
| 31 | 30 | ralimiaa | |- ( A. x e. I R e. X -> A. x e. I ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) = ( ( F ` x ) E ( G ` x ) ) ) |
| 32 | 5 31 | syl | |- ( ph -> A. x e. I ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) = ( ( F ` x ) E ( G ` x ) ) ) |
| 33 | mpteq12 | |- ( ( I = I /\ A. x e. I ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) = ( ( F ` x ) E ( G ` x ) ) ) -> ( x e. I |-> ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) ) = ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) ) |
|
| 34 | 26 32 33 | syl2anc | |- ( ph -> ( x e. I |-> ( ( F ` x ) ( dist ` ( ( x e. I |-> R ) ` x ) ) ( G ` x ) ) ) = ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) ) |
| 35 | 25 34 | eqtrid | |- ( ph -> ( y e. I |-> ( ( F ` y ) ( dist ` ( ( x e. I |-> R ) ` y ) ) ( G ` y ) ) ) = ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) ) |
| 36 | 35 | rneqd | |- ( ph -> ran ( y e. I |-> ( ( F ` y ) ( dist ` ( ( x e. I |-> R ) ` y ) ) ( G ` y ) ) ) = ran ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) ) |
| 37 | 36 | uneq1d | |- ( ph -> ( ran ( y e. I |-> ( ( F ` y ) ( dist ` ( ( x e. I |-> R ) ` y ) ) ( G ` y ) ) ) u. { 0 } ) = ( ran ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) u. { 0 } ) ) |
| 38 | 37 | supeq1d | |- ( ph -> sup ( ( ran ( y e. I |-> ( ( F ` y ) ( dist ` ( ( x e. I |-> R ) ` y ) ) ( G ` y ) ) ) u. { 0 } ) , RR* , < ) = sup ( ( ran ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) u. { 0 } ) , RR* , < ) ) |
| 39 | 13 38 | eqtrd | |- ( ph -> ( F D G ) = sup ( ( ran ( x e. I |-> ( ( F ` x ) E ( G ` x ) ) ) u. { 0 } ) , RR* , < ) ) |