This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restriction of a power metric. (Contributed by Mario Carneiro, 16-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resspwsds.y | |- ( ph -> Y = ( R ^s I ) ) |
|
| resspwsds.h | |- ( ph -> H = ( ( R |`s A ) ^s I ) ) |
||
| resspwsds.b | |- B = ( Base ` H ) |
||
| resspwsds.d | |- D = ( dist ` Y ) |
||
| resspwsds.e | |- E = ( dist ` H ) |
||
| resspwsds.i | |- ( ph -> I e. V ) |
||
| resspwsds.r | |- ( ph -> R e. W ) |
||
| resspwsds.a | |- ( ph -> A e. X ) |
||
| Assertion | resspwsds | |- ( ph -> E = ( D |` ( B X. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resspwsds.y | |- ( ph -> Y = ( R ^s I ) ) |
|
| 2 | resspwsds.h | |- ( ph -> H = ( ( R |`s A ) ^s I ) ) |
|
| 3 | resspwsds.b | |- B = ( Base ` H ) |
|
| 4 | resspwsds.d | |- D = ( dist ` Y ) |
|
| 5 | resspwsds.e | |- E = ( dist ` H ) |
|
| 6 | resspwsds.i | |- ( ph -> I e. V ) |
|
| 7 | resspwsds.r | |- ( ph -> R e. W ) |
|
| 8 | resspwsds.a | |- ( ph -> A e. X ) |
|
| 9 | eqid | |- ( R ^s I ) = ( R ^s I ) |
|
| 10 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 11 | 9 10 | pwsval | |- ( ( R e. W /\ I e. V ) -> ( R ^s I ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 12 | 7 6 11 | syl2anc | |- ( ph -> ( R ^s I ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 13 | fconstmpt | |- ( I X. { R } ) = ( x e. I |-> R ) |
|
| 14 | 13 | oveq2i | |- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( x e. I |-> R ) ) |
| 15 | 12 14 | eqtrdi | |- ( ph -> ( R ^s I ) = ( ( Scalar ` R ) Xs_ ( x e. I |-> R ) ) ) |
| 16 | 1 15 | eqtrd | |- ( ph -> Y = ( ( Scalar ` R ) Xs_ ( x e. I |-> R ) ) ) |
| 17 | ovex | |- ( R |`s A ) e. _V |
|
| 18 | eqid | |- ( ( R |`s A ) ^s I ) = ( ( R |`s A ) ^s I ) |
|
| 19 | eqid | |- ( Scalar ` ( R |`s A ) ) = ( Scalar ` ( R |`s A ) ) |
|
| 20 | 18 19 | pwsval | |- ( ( ( R |`s A ) e. _V /\ I e. V ) -> ( ( R |`s A ) ^s I ) = ( ( Scalar ` ( R |`s A ) ) Xs_ ( I X. { ( R |`s A ) } ) ) ) |
| 21 | 17 6 20 | sylancr | |- ( ph -> ( ( R |`s A ) ^s I ) = ( ( Scalar ` ( R |`s A ) ) Xs_ ( I X. { ( R |`s A ) } ) ) ) |
| 22 | fconstmpt | |- ( I X. { ( R |`s A ) } ) = ( x e. I |-> ( R |`s A ) ) |
|
| 23 | 22 | oveq2i | |- ( ( Scalar ` ( R |`s A ) ) Xs_ ( I X. { ( R |`s A ) } ) ) = ( ( Scalar ` ( R |`s A ) ) Xs_ ( x e. I |-> ( R |`s A ) ) ) |
| 24 | 21 23 | eqtrdi | |- ( ph -> ( ( R |`s A ) ^s I ) = ( ( Scalar ` ( R |`s A ) ) Xs_ ( x e. I |-> ( R |`s A ) ) ) ) |
| 25 | 2 24 | eqtrd | |- ( ph -> H = ( ( Scalar ` ( R |`s A ) ) Xs_ ( x e. I |-> ( R |`s A ) ) ) ) |
| 26 | fvexd | |- ( ph -> ( Scalar ` R ) e. _V ) |
|
| 27 | fvexd | |- ( ph -> ( Scalar ` ( R |`s A ) ) e. _V ) |
|
| 28 | 7 | adantr | |- ( ( ph /\ x e. I ) -> R e. W ) |
| 29 | 8 | adantr | |- ( ( ph /\ x e. I ) -> A e. X ) |
| 30 | 16 25 3 4 5 26 27 6 28 29 | ressprdsds | |- ( ph -> E = ( D |` ( B X. B ) ) ) |