This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The base set of an indexed structure product. (Contributed by Mario Carneiro, 13-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prdsbasmpt2.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) |
|
| prdsbasmpt2.b | |- B = ( Base ` Y ) |
||
| prdsbasmpt2.s | |- ( ph -> S e. V ) |
||
| prdsbasmpt2.i | |- ( ph -> I e. W ) |
||
| prdsbasmpt2.r | |- ( ph -> A. x e. I R e. X ) |
||
| prdsbasmpt2.k | |- K = ( Base ` R ) |
||
| Assertion | prdsbas3 | |- ( ph -> B = X_ x e. I K ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prdsbasmpt2.y | |- Y = ( S Xs_ ( x e. I |-> R ) ) |
|
| 2 | prdsbasmpt2.b | |- B = ( Base ` Y ) |
|
| 3 | prdsbasmpt2.s | |- ( ph -> S e. V ) |
|
| 4 | prdsbasmpt2.i | |- ( ph -> I e. W ) |
|
| 5 | prdsbasmpt2.r | |- ( ph -> A. x e. I R e. X ) |
|
| 6 | prdsbasmpt2.k | |- K = ( Base ` R ) |
|
| 7 | eqid | |- ( x e. I |-> R ) = ( x e. I |-> R ) |
|
| 8 | 7 | fnmpt | |- ( A. x e. I R e. X -> ( x e. I |-> R ) Fn I ) |
| 9 | 5 8 | syl | |- ( ph -> ( x e. I |-> R ) Fn I ) |
| 10 | 1 2 3 4 9 | prdsbas2 | |- ( ph -> B = X_ y e. I ( Base ` ( ( x e. I |-> R ) ` y ) ) ) |
| 11 | nfcv | |- F/_ x Base |
|
| 12 | nffvmpt1 | |- F/_ x ( ( x e. I |-> R ) ` y ) |
|
| 13 | 11 12 | nffv | |- F/_ x ( Base ` ( ( x e. I |-> R ) ` y ) ) |
| 14 | nfcv | |- F/_ y ( Base ` ( ( x e. I |-> R ) ` x ) ) |
|
| 15 | 2fveq3 | |- ( y = x -> ( Base ` ( ( x e. I |-> R ) ` y ) ) = ( Base ` ( ( x e. I |-> R ) ` x ) ) ) |
|
| 16 | 13 14 15 | cbvixp | |- X_ y e. I ( Base ` ( ( x e. I |-> R ) ` y ) ) = X_ x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) |
| 17 | 10 16 | eqtrdi | |- ( ph -> B = X_ x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) ) |
| 18 | 7 | fvmpt2 | |- ( ( x e. I /\ R e. X ) -> ( ( x e. I |-> R ) ` x ) = R ) |
| 19 | 18 | fveq2d | |- ( ( x e. I /\ R e. X ) -> ( Base ` ( ( x e. I |-> R ) ` x ) ) = ( Base ` R ) ) |
| 20 | 19 6 | eqtr4di | |- ( ( x e. I /\ R e. X ) -> ( Base ` ( ( x e. I |-> R ) ` x ) ) = K ) |
| 21 | 20 | ralimiaa | |- ( A. x e. I R e. X -> A. x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) = K ) |
| 22 | ixpeq2 | |- ( A. x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) = K -> X_ x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) = X_ x e. I K ) |
|
| 23 | 5 21 22 | 3syl | |- ( ph -> X_ x e. I ( Base ` ( ( x e. I |-> R ) ` x ) ) = X_ x e. I K ) |
| 24 | 17 23 | eqtrd | |- ( ph -> B = X_ x e. I K ) |