This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two operators with the same domain are equal iff their values at each point in the domain are equal. (Contributed by Jeff Madsen, 7-Jun-2010)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eqfnov2 | |- ( ( F Fn ( A X. B ) /\ G Fn ( A X. B ) ) -> ( F = G <-> A. x e. A A. y e. B ( x F y ) = ( x G y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqfnov | |- ( ( F Fn ( A X. B ) /\ G Fn ( A X. B ) ) -> ( F = G <-> ( ( A X. B ) = ( A X. B ) /\ A. x e. A A. y e. B ( x F y ) = ( x G y ) ) ) ) |
|
| 2 | simpr | |- ( ( ( A X. B ) = ( A X. B ) /\ A. x e. A A. y e. B ( x F y ) = ( x G y ) ) -> A. x e. A A. y e. B ( x F y ) = ( x G y ) ) |
|
| 3 | eqidd | |- ( A. x e. A A. y e. B ( x F y ) = ( x G y ) -> ( A X. B ) = ( A X. B ) ) |
|
| 4 | 3 | ancri | |- ( A. x e. A A. y e. B ( x F y ) = ( x G y ) -> ( ( A X. B ) = ( A X. B ) /\ A. x e. A A. y e. B ( x F y ) = ( x G y ) ) ) |
| 5 | 2 4 | impbii | |- ( ( ( A X. B ) = ( A X. B ) /\ A. x e. A A. y e. B ( x F y ) = ( x G y ) ) <-> A. x e. A A. y e. B ( x F y ) = ( x G y ) ) |
| 6 | 1 5 | bitrdi | |- ( ( F Fn ( A X. B ) /\ G Fn ( A X. B ) ) -> ( F = G <-> A. x e. A A. y e. B ( x F y ) = ( x G y ) ) ) |