This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for two categories with the same base to have the same hom-sets. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | homfeq.h | |- H = ( Hom ` C ) |
|
| homfeq.j | |- J = ( Hom ` D ) |
||
| homfeq.1 | |- ( ph -> B = ( Base ` C ) ) |
||
| homfeq.2 | |- ( ph -> B = ( Base ` D ) ) |
||
| Assertion | homfeq | |- ( ph -> ( ( Homf ` C ) = ( Homf ` D ) <-> A. x e. B A. y e. B ( x H y ) = ( x J y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | homfeq.h | |- H = ( Hom ` C ) |
|
| 2 | homfeq.j | |- J = ( Hom ` D ) |
|
| 3 | homfeq.1 | |- ( ph -> B = ( Base ` C ) ) |
|
| 4 | homfeq.2 | |- ( ph -> B = ( Base ` D ) ) |
|
| 5 | eqid | |- ( Homf ` C ) = ( Homf ` C ) |
|
| 6 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 7 | 5 6 1 | homffval | |- ( Homf ` C ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x H y ) ) |
| 8 | eqidd | |- ( ph -> ( x H y ) = ( x H y ) ) |
|
| 9 | 3 3 8 | mpoeq123dv | |- ( ph -> ( x e. B , y e. B |-> ( x H y ) ) = ( x e. ( Base ` C ) , y e. ( Base ` C ) |-> ( x H y ) ) ) |
| 10 | 7 9 | eqtr4id | |- ( ph -> ( Homf ` C ) = ( x e. B , y e. B |-> ( x H y ) ) ) |
| 11 | eqid | |- ( Homf ` D ) = ( Homf ` D ) |
|
| 12 | eqid | |- ( Base ` D ) = ( Base ` D ) |
|
| 13 | 11 12 2 | homffval | |- ( Homf ` D ) = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x J y ) ) |
| 14 | eqidd | |- ( ph -> ( x J y ) = ( x J y ) ) |
|
| 15 | 4 4 14 | mpoeq123dv | |- ( ph -> ( x e. B , y e. B |-> ( x J y ) ) = ( x e. ( Base ` D ) , y e. ( Base ` D ) |-> ( x J y ) ) ) |
| 16 | 13 15 | eqtr4id | |- ( ph -> ( Homf ` D ) = ( x e. B , y e. B |-> ( x J y ) ) ) |
| 17 | 10 16 | eqeq12d | |- ( ph -> ( ( Homf ` C ) = ( Homf ` D ) <-> ( x e. B , y e. B |-> ( x H y ) ) = ( x e. B , y e. B |-> ( x J y ) ) ) ) |
| 18 | ovex | |- ( x H y ) e. _V |
|
| 19 | 18 | rgen2w | |- A. x e. B A. y e. B ( x H y ) e. _V |
| 20 | mpo2eqb | |- ( A. x e. B A. y e. B ( x H y ) e. _V -> ( ( x e. B , y e. B |-> ( x H y ) ) = ( x e. B , y e. B |-> ( x J y ) ) <-> A. x e. B A. y e. B ( x H y ) = ( x J y ) ) ) |
|
| 21 | 19 20 | ax-mp | |- ( ( x e. B , y e. B |-> ( x H y ) ) = ( x e. B , y e. B |-> ( x J y ) ) <-> A. x e. B A. y e. B ( x H y ) = ( x J y ) ) |
| 22 | 17 21 | bitrdi | |- ( ph -> ( ( Homf ` C ) = ( Homf ` D ) <-> A. x e. B A. y e. B ( x H y ) = ( x J y ) ) ) |