This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Swap subtrahend and result of subtraction. (Contributed by NM, 14-Dec-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | subsub23 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) = C <-> ( A - C ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addcom | |- ( ( B e. CC /\ C e. CC ) -> ( B + C ) = ( C + B ) ) |
|
| 2 | 1 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( B + C ) = ( C + B ) ) |
| 3 | 2 | eqeq1d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( B + C ) = A <-> ( C + B ) = A ) ) |
| 4 | subadd | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) = C <-> ( B + C ) = A ) ) |
|
| 5 | subadd | |- ( ( A e. CC /\ C e. CC /\ B e. CC ) -> ( ( A - C ) = B <-> ( C + B ) = A ) ) |
|
| 6 | 5 | 3com23 | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - C ) = B <-> ( C + B ) = A ) ) |
| 7 | 3 4 6 | 3bitr4d | |- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) = C <-> ( A - C ) = B ) ) |