This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite sum of continuous real functions, from a common topological space, is continuous. The class expression for B normally contains free variables k and x to index it. See fsumcn for the analogous theorem on continuous complex functions. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | refsumcn.1 | |- F/ x ph |
|
| refsumcn.2 | |- K = ( topGen ` ran (,) ) |
||
| refsumcn.3 | |- ( ph -> J e. ( TopOn ` X ) ) |
||
| refsumcn.4 | |- ( ph -> A e. Fin ) |
||
| refsumcn.5 | |- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn K ) ) |
||
| Assertion | refsumcn | |- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | refsumcn.1 | |- F/ x ph |
|
| 2 | refsumcn.2 | |- K = ( topGen ` ran (,) ) |
|
| 3 | refsumcn.3 | |- ( ph -> J e. ( TopOn ` X ) ) |
|
| 4 | refsumcn.4 | |- ( ph -> A e. Fin ) |
|
| 5 | refsumcn.5 | |- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn K ) ) |
|
| 6 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 7 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 8 | 2 7 | eqtri | |- K = ( ( TopOpen ` CCfld ) |`t RR ) |
| 9 | 8 | oveq2i | |- ( J Cn K ) = ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) |
| 10 | 5 9 | eleqtrdi | |- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
| 11 | 6 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 12 | 11 | a1i | |- ( ( ph /\ k e. A ) -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 13 | 3 | adantr | |- ( ( ph /\ k e. A ) -> J e. ( TopOn ` X ) ) |
| 14 | retopon | |- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
|
| 15 | 2 14 | eqeltri | |- K e. ( TopOn ` RR ) |
| 16 | 15 | a1i | |- ( ( ph /\ k e. A ) -> K e. ( TopOn ` RR ) ) |
| 17 | cnf2 | |- ( ( J e. ( TopOn ` X ) /\ K e. ( TopOn ` RR ) /\ ( x e. X |-> B ) e. ( J Cn K ) ) -> ( x e. X |-> B ) : X --> RR ) |
|
| 18 | 13 16 5 17 | syl3anc | |- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) : X --> RR ) |
| 19 | 18 | frnd | |- ( ( ph /\ k e. A ) -> ran ( x e. X |-> B ) C_ RR ) |
| 20 | ax-resscn | |- RR C_ CC |
|
| 21 | 20 | a1i | |- ( ( ph /\ k e. A ) -> RR C_ CC ) |
| 22 | cnrest2 | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( x e. X |-> B ) C_ RR /\ RR C_ CC ) -> ( ( x e. X |-> B ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( x e. X |-> B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
|
| 23 | 12 19 21 22 | syl3anc | |- ( ( ph /\ k e. A ) -> ( ( x e. X |-> B ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( x e. X |-> B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
| 24 | 10 23 | mpbird | |- ( ( ph /\ k e. A ) -> ( x e. X |-> B ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 25 | 6 3 4 24 | fsumcnf | |- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
| 26 | 11 | a1i | |- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 27 | 4 | adantr | |- ( ( ph /\ x e. X ) -> A e. Fin ) |
| 28 | simpll | |- ( ( ( ph /\ x e. X ) /\ k e. A ) -> ph ) |
|
| 29 | simpr | |- ( ( ( ph /\ x e. X ) /\ k e. A ) -> k e. A ) |
|
| 30 | 28 29 | jca | |- ( ( ( ph /\ x e. X ) /\ k e. A ) -> ( ph /\ k e. A ) ) |
| 31 | simplr | |- ( ( ( ph /\ x e. X ) /\ k e. A ) -> x e. X ) |
|
| 32 | eqid | |- ( x e. X |-> B ) = ( x e. X |-> B ) |
|
| 33 | 32 | fmpt | |- ( A. x e. X B e. RR <-> ( x e. X |-> B ) : X --> RR ) |
| 34 | 18 33 | sylibr | |- ( ( ph /\ k e. A ) -> A. x e. X B e. RR ) |
| 35 | rsp | |- ( A. x e. X B e. RR -> ( x e. X -> B e. RR ) ) |
|
| 36 | 34 35 | syl | |- ( ( ph /\ k e. A ) -> ( x e. X -> B e. RR ) ) |
| 37 | 30 31 36 | sylc | |- ( ( ( ph /\ x e. X ) /\ k e. A ) -> B e. RR ) |
| 38 | 27 37 | fsumrecl | |- ( ( ph /\ x e. X ) -> sum_ k e. A B e. RR ) |
| 39 | 38 | ex | |- ( ph -> ( x e. X -> sum_ k e. A B e. RR ) ) |
| 40 | 1 39 | ralrimi | |- ( ph -> A. x e. X sum_ k e. A B e. RR ) |
| 41 | eqid | |- ( x e. X |-> sum_ k e. A B ) = ( x e. X |-> sum_ k e. A B ) |
|
| 42 | 41 | fnmpt | |- ( A. x e. X sum_ k e. A B e. RR -> ( x e. X |-> sum_ k e. A B ) Fn X ) |
| 43 | 40 42 | syl | |- ( ph -> ( x e. X |-> sum_ k e. A B ) Fn X ) |
| 44 | nfcv | |- F/_ x X |
|
| 45 | nfcv | |- F/_ x y |
|
| 46 | nfmpt1 | |- F/_ x ( x e. X |-> sum_ k e. A B ) |
|
| 47 | 44 45 46 | fvelrnbf | |- ( ( x e. X |-> sum_ k e. A B ) Fn X -> ( y e. ran ( x e. X |-> sum_ k e. A B ) <-> E. x e. X ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) ) |
| 48 | 43 47 | syl | |- ( ph -> ( y e. ran ( x e. X |-> sum_ k e. A B ) <-> E. x e. X ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) ) |
| 49 | 48 | biimpa | |- ( ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) ) -> E. x e. X ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) |
| 50 | 46 | nfrn | |- F/_ x ran ( x e. X |-> sum_ k e. A B ) |
| 51 | 50 | nfcri | |- F/ x y e. ran ( x e. X |-> sum_ k e. A B ) |
| 52 | 1 51 | nfan | |- F/ x ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) ) |
| 53 | nfcv | |- F/_ x RR |
|
| 54 | 53 | nfcri | |- F/ x y e. RR |
| 55 | simpr | |- ( ( ph /\ x e. X ) -> x e. X ) |
|
| 56 | 55 38 | jca | |- ( ( ph /\ x e. X ) -> ( x e. X /\ sum_ k e. A B e. RR ) ) |
| 57 | 41 | fvmpt2 | |- ( ( x e. X /\ sum_ k e. A B e. RR ) -> ( ( x e. X |-> sum_ k e. A B ) ` x ) = sum_ k e. A B ) |
| 58 | 56 57 | syl | |- ( ( ph /\ x e. X ) -> ( ( x e. X |-> sum_ k e. A B ) ` x ) = sum_ k e. A B ) |
| 59 | 58 | 3adant3 | |- ( ( ph /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> ( ( x e. X |-> sum_ k e. A B ) ` x ) = sum_ k e. A B ) |
| 60 | simp3 | |- ( ( ph /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) |
|
| 61 | 59 60 | eqtr3d | |- ( ( ph /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> sum_ k e. A B = y ) |
| 62 | 38 | 3adant3 | |- ( ( ph /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> sum_ k e. A B e. RR ) |
| 63 | 61 62 | eqeltrrd | |- ( ( ph /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> y e. RR ) |
| 64 | 63 | 3adant1r | |- ( ( ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) ) /\ x e. X /\ ( ( x e. X |-> sum_ k e. A B ) ` x ) = y ) -> y e. RR ) |
| 65 | 64 | 3exp | |- ( ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) ) -> ( x e. X -> ( ( ( x e. X |-> sum_ k e. A B ) ` x ) = y -> y e. RR ) ) ) |
| 66 | 52 54 65 | rexlimd | |- ( ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) ) -> ( E. x e. X ( ( x e. X |-> sum_ k e. A B ) ` x ) = y -> y e. RR ) ) |
| 67 | 49 66 | mpd | |- ( ( ph /\ y e. ran ( x e. X |-> sum_ k e. A B ) ) -> y e. RR ) |
| 68 | 67 | ex | |- ( ph -> ( y e. ran ( x e. X |-> sum_ k e. A B ) -> y e. RR ) ) |
| 69 | 68 | ssrdv | |- ( ph -> ran ( x e. X |-> sum_ k e. A B ) C_ RR ) |
| 70 | 20 | a1i | |- ( ph -> RR C_ CC ) |
| 71 | cnrest2 | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran ( x e. X |-> sum_ k e. A B ) C_ RR /\ RR C_ CC ) -> ( ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
|
| 72 | 26 69 70 71 | syl3anc | |- ( ph -> ( ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( TopOpen ` CCfld ) ) <-> ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
| 73 | 25 72 | mpbid | |- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
| 74 | 73 9 | eleqtrrdi | |- ( ph -> ( x e. X |-> sum_ k e. A B ) e. ( J Cn K ) ) |