This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mpteq12f | |- ( ( A. x A = C /\ A. x e. A B = D ) -> ( x e. A |-> B ) = ( x e. C |-> D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfa1 | |- F/ x A. x A = C |
|
| 2 | nfra1 | |- F/ x A. x e. A B = D |
|
| 3 | 1 2 | nfan | |- F/ x ( A. x A = C /\ A. x e. A B = D ) |
| 4 | nfv | |- F/ y ( A. x A = C /\ A. x e. A B = D ) |
|
| 5 | rspa | |- ( ( A. x e. A B = D /\ x e. A ) -> B = D ) |
|
| 6 | 5 | eqeq2d | |- ( ( A. x e. A B = D /\ x e. A ) -> ( y = B <-> y = D ) ) |
| 7 | 6 | pm5.32da | |- ( A. x e. A B = D -> ( ( x e. A /\ y = B ) <-> ( x e. A /\ y = D ) ) ) |
| 8 | sp | |- ( A. x A = C -> A = C ) |
|
| 9 | 8 | eleq2d | |- ( A. x A = C -> ( x e. A <-> x e. C ) ) |
| 10 | 9 | anbi1d | |- ( A. x A = C -> ( ( x e. A /\ y = D ) <-> ( x e. C /\ y = D ) ) ) |
| 11 | 7 10 | sylan9bbr | |- ( ( A. x A = C /\ A. x e. A B = D ) -> ( ( x e. A /\ y = B ) <-> ( x e. C /\ y = D ) ) ) |
| 12 | 3 4 11 | opabbid | |- ( ( A. x A = C /\ A. x e. A B = D ) -> { <. x , y >. | ( x e. A /\ y = B ) } = { <. x , y >. | ( x e. C /\ y = D ) } ) |
| 13 | df-mpt | |- ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) } |
|
| 14 | df-mpt | |- ( x e. C |-> D ) = { <. x , y >. | ( x e. C /\ y = D ) } |
|
| 15 | 12 13 14 | 3eqtr4g | |- ( ( A. x A = C /\ A. x e. A B = D ) -> ( x e. A |-> B ) = ( x e. C |-> D ) ) |