This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of two distinct complex values. The class expression for A and B normally contain free variable k to index it. (Contributed by Glauco Siliprandi, 20-Apr-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sumpair.1 | |- ( ph -> F/_ k D ) |
|
| sumpair.3 | |- ( ph -> F/_ k E ) |
||
| sumupair.1 | |- ( ph -> A e. V ) |
||
| sumupair.2 | |- ( ph -> B e. W ) |
||
| sumupair.3 | |- ( ph -> D e. CC ) |
||
| sumupair.4 | |- ( ph -> E e. CC ) |
||
| sumupair.5 | |- ( ph -> A =/= B ) |
||
| sumupair.8 | |- ( ( ph /\ k = A ) -> C = D ) |
||
| sumupair.9 | |- ( ( ph /\ k = B ) -> C = E ) |
||
| Assertion | sumpair | |- ( ph -> sum_ k e. { A , B } C = ( D + E ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumpair.1 | |- ( ph -> F/_ k D ) |
|
| 2 | sumpair.3 | |- ( ph -> F/_ k E ) |
|
| 3 | sumupair.1 | |- ( ph -> A e. V ) |
|
| 4 | sumupair.2 | |- ( ph -> B e. W ) |
|
| 5 | sumupair.3 | |- ( ph -> D e. CC ) |
|
| 6 | sumupair.4 | |- ( ph -> E e. CC ) |
|
| 7 | sumupair.5 | |- ( ph -> A =/= B ) |
|
| 8 | sumupair.8 | |- ( ( ph /\ k = A ) -> C = D ) |
|
| 9 | sumupair.9 | |- ( ( ph /\ k = B ) -> C = E ) |
|
| 10 | disjsn2 | |- ( A =/= B -> ( { A } i^i { B } ) = (/) ) |
|
| 11 | 7 10 | syl | |- ( ph -> ( { A } i^i { B } ) = (/) ) |
| 12 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
| 13 | 12 | a1i | |- ( ph -> { A , B } = ( { A } u. { B } ) ) |
| 14 | prfi | |- { A , B } e. Fin |
|
| 15 | 14 | a1i | |- ( ph -> { A , B } e. Fin ) |
| 16 | elpri | |- ( k e. { A , B } -> ( k = A \/ k = B ) ) |
|
| 17 | 5 | adantr | |- ( ( ph /\ k = A ) -> D e. CC ) |
| 18 | 8 17 | eqeltrd | |- ( ( ph /\ k = A ) -> C e. CC ) |
| 19 | 6 | adantr | |- ( ( ph /\ k = B ) -> E e. CC ) |
| 20 | 9 19 | eqeltrd | |- ( ( ph /\ k = B ) -> C e. CC ) |
| 21 | 18 20 | jaodan | |- ( ( ph /\ ( k = A \/ k = B ) ) -> C e. CC ) |
| 22 | 16 21 | sylan2 | |- ( ( ph /\ k e. { A , B } ) -> C e. CC ) |
| 23 | 11 13 15 22 | fsumsplit | |- ( ph -> sum_ k e. { A , B } C = ( sum_ k e. { A } C + sum_ k e. { B } C ) ) |
| 24 | nfv | |- F/ k ph |
|
| 25 | 1 24 8 3 5 | sumsnd | |- ( ph -> sum_ k e. { A } C = D ) |
| 26 | 2 24 9 4 6 | sumsnd | |- ( ph -> sum_ k e. { B } C = E ) |
| 27 | 25 26 | oveq12d | |- ( ph -> ( sum_ k e. { A } C + sum_ k e. { B } C ) = ( D + E ) ) |
| 28 | 23 27 | eqtrd | |- ( ph -> sum_ k e. { A , B } C = ( D + E ) ) |