This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real numbers form a division subring of the complex numbers. (Contributed by Mario Carneiro, 4-Dec-2014) (Revised by Thierry Arnoux, 30-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | resubdrg | |- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | recn | |- ( x e. RR -> x e. CC ) |
|
| 2 | readdcl | |- ( ( x e. RR /\ y e. RR ) -> ( x + y ) e. RR ) |
|
| 3 | renegcl | |- ( x e. RR -> -u x e. RR ) |
|
| 4 | 1re | |- 1 e. RR |
|
| 5 | remulcl | |- ( ( x e. RR /\ y e. RR ) -> ( x x. y ) e. RR ) |
|
| 6 | rereccl | |- ( ( x e. RR /\ x =/= 0 ) -> ( 1 / x ) e. RR ) |
|
| 7 | 1 2 3 4 5 6 | cnsubdrglem | |- ( RR e. ( SubRing ` CCfld ) /\ ( CCfld |`s RR ) e. DivRing ) |
| 8 | df-refld | |- RRfld = ( CCfld |`s RR ) |
|
| 9 | 8 | eleq1i | |- ( RRfld e. DivRing <-> ( CCfld |`s RR ) e. DivRing ) |
| 10 | 9 | anbi2i | |- ( ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) <-> ( RR e. ( SubRing ` CCfld ) /\ ( CCfld |`s RR ) e. DivRing ) ) |
| 11 | 7 10 | mpbir | |- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |