This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The sine of a negative is the negative of the sine. (Contributed by NM, 30-Apr-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sinneg | |- ( A e. CC -> ( sin ` -u A ) = -u ( sin ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcl | |- ( A e. CC -> -u A e. CC ) |
|
| 2 | sinval | |- ( -u A e. CC -> ( sin ` -u A ) = ( ( ( exp ` ( _i x. -u A ) ) - ( exp ` ( -u _i x. -u A ) ) ) / ( 2 x. _i ) ) ) |
|
| 3 | 1 2 | syl | |- ( A e. CC -> ( sin ` -u A ) = ( ( ( exp ` ( _i x. -u A ) ) - ( exp ` ( -u _i x. -u A ) ) ) / ( 2 x. _i ) ) ) |
| 4 | sinval | |- ( A e. CC -> ( sin ` A ) = ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
|
| 5 | 4 | negeqd | |- ( A e. CC -> -u ( sin ` A ) = -u ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
| 6 | ax-icn | |- _i e. CC |
|
| 7 | mulcl | |- ( ( _i e. CC /\ A e. CC ) -> ( _i x. A ) e. CC ) |
|
| 8 | 6 7 | mpan | |- ( A e. CC -> ( _i x. A ) e. CC ) |
| 9 | efcl | |- ( ( _i x. A ) e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
|
| 10 | 8 9 | syl | |- ( A e. CC -> ( exp ` ( _i x. A ) ) e. CC ) |
| 11 | negicn | |- -u _i e. CC |
|
| 12 | mulcl | |- ( ( -u _i e. CC /\ A e. CC ) -> ( -u _i x. A ) e. CC ) |
|
| 13 | 11 12 | mpan | |- ( A e. CC -> ( -u _i x. A ) e. CC ) |
| 14 | efcl | |- ( ( -u _i x. A ) e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
|
| 15 | 13 14 | syl | |- ( A e. CC -> ( exp ` ( -u _i x. A ) ) e. CC ) |
| 16 | 10 15 | subcld | |- ( A e. CC -> ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC ) |
| 17 | 2mulicn | |- ( 2 x. _i ) e. CC |
|
| 18 | 2muline0 | |- ( 2 x. _i ) =/= 0 |
|
| 19 | divneg | |- ( ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC /\ ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) -> -u ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = ( -u ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
|
| 20 | 17 18 19 | mp3an23 | |- ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) e. CC -> -u ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = ( -u ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
| 21 | 16 20 | syl | |- ( A e. CC -> -u ( ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) = ( -u ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
| 22 | 5 21 | eqtrd | |- ( A e. CC -> -u ( sin ` A ) = ( -u ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
| 23 | mulneg12 | |- ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. A ) = ( _i x. -u A ) ) |
|
| 24 | 6 23 | mpan | |- ( A e. CC -> ( -u _i x. A ) = ( _i x. -u A ) ) |
| 25 | 24 | eqcomd | |- ( A e. CC -> ( _i x. -u A ) = ( -u _i x. A ) ) |
| 26 | 25 | fveq2d | |- ( A e. CC -> ( exp ` ( _i x. -u A ) ) = ( exp ` ( -u _i x. A ) ) ) |
| 27 | mul2neg | |- ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. -u A ) = ( _i x. A ) ) |
|
| 28 | 6 27 | mpan | |- ( A e. CC -> ( -u _i x. -u A ) = ( _i x. A ) ) |
| 29 | 28 | fveq2d | |- ( A e. CC -> ( exp ` ( -u _i x. -u A ) ) = ( exp ` ( _i x. A ) ) ) |
| 30 | 26 29 | oveq12d | |- ( A e. CC -> ( ( exp ` ( _i x. -u A ) ) - ( exp ` ( -u _i x. -u A ) ) ) = ( ( exp ` ( -u _i x. A ) ) - ( exp ` ( _i x. A ) ) ) ) |
| 31 | 10 15 | negsubdi2d | |- ( A e. CC -> -u ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) = ( ( exp ` ( -u _i x. A ) ) - ( exp ` ( _i x. A ) ) ) ) |
| 32 | 30 31 | eqtr4d | |- ( A e. CC -> ( ( exp ` ( _i x. -u A ) ) - ( exp ` ( -u _i x. -u A ) ) ) = -u ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) ) |
| 33 | 32 | oveq1d | |- ( A e. CC -> ( ( ( exp ` ( _i x. -u A ) ) - ( exp ` ( -u _i x. -u A ) ) ) / ( 2 x. _i ) ) = ( -u ( ( exp ` ( _i x. A ) ) - ( exp ` ( -u _i x. A ) ) ) / ( 2 x. _i ) ) ) |
| 34 | 22 33 | eqtr4d | |- ( A e. CC -> -u ( sin ` A ) = ( ( ( exp ` ( _i x. -u A ) ) - ( exp ` ( -u _i x. -u A ) ) ) / ( 2 x. _i ) ) ) |
| 35 | 3 34 | eqtr4d | |- ( A e. CC -> ( sin ` -u A ) = -u ( sin ` A ) ) |