This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relationship between sine and arcsine. (Contributed by Mario Carneiro, 2-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | asinsinb | |- ( ( A e. CC /\ B e. CC /\ ( Re ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( arcsin ` A ) = B <-> ( sin ` B ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sinasin | |- ( A e. CC -> ( sin ` ( arcsin ` A ) ) = A ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. CC /\ B e. CC /\ ( Re ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( sin ` ( arcsin ` A ) ) = A ) |
| 3 | fveqeq2 | |- ( ( arcsin ` A ) = B -> ( ( sin ` ( arcsin ` A ) ) = A <-> ( sin ` B ) = A ) ) |
|
| 4 | 2 3 | syl5ibcom | |- ( ( A e. CC /\ B e. CC /\ ( Re ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( arcsin ` A ) = B -> ( sin ` B ) = A ) ) |
| 5 | asinsin | |- ( ( B e. CC /\ ( Re ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( arcsin ` ( sin ` B ) ) = B ) |
|
| 6 | 5 | 3adant1 | |- ( ( A e. CC /\ B e. CC /\ ( Re ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( arcsin ` ( sin ` B ) ) = B ) |
| 7 | fveqeq2 | |- ( ( sin ` B ) = A -> ( ( arcsin ` ( sin ` B ) ) = B <-> ( arcsin ` A ) = B ) ) |
|
| 8 | 6 7 | syl5ibcom | |- ( ( A e. CC /\ B e. CC /\ ( Re ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( sin ` B ) = A -> ( arcsin ` A ) = B ) ) |
| 9 | 4 8 | impbid | |- ( ( A e. CC /\ B e. CC /\ ( Re ` B ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( arcsin ` A ) = B <-> ( sin ` B ) = A ) ) |