This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of a Cartesian product when the rank of the union of its arguments is a successor ordinal. Part of Exercise 4 of Kunen p. 107. See rankxplim for the limit ordinal case. (Contributed by NM, 19-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rankxplim.1 | |- A e. _V |
|
| rankxplim.2 | |- B e. _V |
||
| Assertion | rankxpsuc | |- ( ( ( rank ` ( A u. B ) ) = suc C /\ ( A X. B ) =/= (/) ) -> ( rank ` ( A X. B ) ) = suc suc ( rank ` ( A u. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankxplim.1 | |- A e. _V |
|
| 2 | rankxplim.2 | |- B e. _V |
|
| 3 | unixp | |- ( ( A X. B ) =/= (/) -> U. U. ( A X. B ) = ( A u. B ) ) |
|
| 4 | 3 | fveq2d | |- ( ( A X. B ) =/= (/) -> ( rank ` U. U. ( A X. B ) ) = ( rank ` ( A u. B ) ) ) |
| 5 | rankuni | |- ( rank ` U. U. ( A X. B ) ) = U. ( rank ` U. ( A X. B ) ) |
|
| 6 | rankuni | |- ( rank ` U. ( A X. B ) ) = U. ( rank ` ( A X. B ) ) |
|
| 7 | 6 | unieqi | |- U. ( rank ` U. ( A X. B ) ) = U. U. ( rank ` ( A X. B ) ) |
| 8 | 5 7 | eqtri | |- ( rank ` U. U. ( A X. B ) ) = U. U. ( rank ` ( A X. B ) ) |
| 9 | 4 8 | eqtr3di | |- ( ( A X. B ) =/= (/) -> ( rank ` ( A u. B ) ) = U. U. ( rank ` ( A X. B ) ) ) |
| 10 | suc11reg | |- ( suc ( rank ` ( A u. B ) ) = suc U. U. ( rank ` ( A X. B ) ) <-> ( rank ` ( A u. B ) ) = U. U. ( rank ` ( A X. B ) ) ) |
|
| 11 | 9 10 | sylibr | |- ( ( A X. B ) =/= (/) -> suc ( rank ` ( A u. B ) ) = suc U. U. ( rank ` ( A X. B ) ) ) |
| 12 | 11 | adantl | |- ( ( ( rank ` ( A u. B ) ) = suc C /\ ( A X. B ) =/= (/) ) -> suc ( rank ` ( A u. B ) ) = suc U. U. ( rank ` ( A X. B ) ) ) |
| 13 | fvex | |- ( rank ` ( A u. B ) ) e. _V |
|
| 14 | eleq1 | |- ( ( rank ` ( A u. B ) ) = suc C -> ( ( rank ` ( A u. B ) ) e. _V <-> suc C e. _V ) ) |
|
| 15 | 13 14 | mpbii | |- ( ( rank ` ( A u. B ) ) = suc C -> suc C e. _V ) |
| 16 | sucexb | |- ( C e. _V <-> suc C e. _V ) |
|
| 17 | 15 16 | sylibr | |- ( ( rank ` ( A u. B ) ) = suc C -> C e. _V ) |
| 18 | nlimsucg | |- ( C e. _V -> -. Lim suc C ) |
|
| 19 | 17 18 | syl | |- ( ( rank ` ( A u. B ) ) = suc C -> -. Lim suc C ) |
| 20 | limeq | |- ( ( rank ` ( A u. B ) ) = suc C -> ( Lim ( rank ` ( A u. B ) ) <-> Lim suc C ) ) |
|
| 21 | 19 20 | mtbird | |- ( ( rank ` ( A u. B ) ) = suc C -> -. Lim ( rank ` ( A u. B ) ) ) |
| 22 | 1 2 | rankxplim2 | |- ( Lim ( rank ` ( A X. B ) ) -> Lim ( rank ` ( A u. B ) ) ) |
| 23 | 21 22 | nsyl | |- ( ( rank ` ( A u. B ) ) = suc C -> -. Lim ( rank ` ( A X. B ) ) ) |
| 24 | 1 2 | xpex | |- ( A X. B ) e. _V |
| 25 | 24 | rankeq0 | |- ( ( A X. B ) = (/) <-> ( rank ` ( A X. B ) ) = (/) ) |
| 26 | 25 | necon3abii | |- ( ( A X. B ) =/= (/) <-> -. ( rank ` ( A X. B ) ) = (/) ) |
| 27 | rankon | |- ( rank ` ( A X. B ) ) e. On |
|
| 28 | 27 | onordi | |- Ord ( rank ` ( A X. B ) ) |
| 29 | ordzsl | |- ( Ord ( rank ` ( A X. B ) ) <-> ( ( rank ` ( A X. B ) ) = (/) \/ E. x e. On ( rank ` ( A X. B ) ) = suc x \/ Lim ( rank ` ( A X. B ) ) ) ) |
|
| 30 | 28 29 | mpbi | |- ( ( rank ` ( A X. B ) ) = (/) \/ E. x e. On ( rank ` ( A X. B ) ) = suc x \/ Lim ( rank ` ( A X. B ) ) ) |
| 31 | 3orass | |- ( ( ( rank ` ( A X. B ) ) = (/) \/ E. x e. On ( rank ` ( A X. B ) ) = suc x \/ Lim ( rank ` ( A X. B ) ) ) <-> ( ( rank ` ( A X. B ) ) = (/) \/ ( E. x e. On ( rank ` ( A X. B ) ) = suc x \/ Lim ( rank ` ( A X. B ) ) ) ) ) |
|
| 32 | 30 31 | mpbi | |- ( ( rank ` ( A X. B ) ) = (/) \/ ( E. x e. On ( rank ` ( A X. B ) ) = suc x \/ Lim ( rank ` ( A X. B ) ) ) ) |
| 33 | 32 | ori | |- ( -. ( rank ` ( A X. B ) ) = (/) -> ( E. x e. On ( rank ` ( A X. B ) ) = suc x \/ Lim ( rank ` ( A X. B ) ) ) ) |
| 34 | 26 33 | sylbi | |- ( ( A X. B ) =/= (/) -> ( E. x e. On ( rank ` ( A X. B ) ) = suc x \/ Lim ( rank ` ( A X. B ) ) ) ) |
| 35 | 34 | ord | |- ( ( A X. B ) =/= (/) -> ( -. E. x e. On ( rank ` ( A X. B ) ) = suc x -> Lim ( rank ` ( A X. B ) ) ) ) |
| 36 | 35 | con1d | |- ( ( A X. B ) =/= (/) -> ( -. Lim ( rank ` ( A X. B ) ) -> E. x e. On ( rank ` ( A X. B ) ) = suc x ) ) |
| 37 | 23 36 | syl5com | |- ( ( rank ` ( A u. B ) ) = suc C -> ( ( A X. B ) =/= (/) -> E. x e. On ( rank ` ( A X. B ) ) = suc x ) ) |
| 38 | nlimsucg | |- ( x e. _V -> -. Lim suc x ) |
|
| 39 | 38 | elv | |- -. Lim suc x |
| 40 | limeq | |- ( ( rank ` ( A X. B ) ) = suc x -> ( Lim ( rank ` ( A X. B ) ) <-> Lim suc x ) ) |
|
| 41 | 39 40 | mtbiri | |- ( ( rank ` ( A X. B ) ) = suc x -> -. Lim ( rank ` ( A X. B ) ) ) |
| 42 | 41 | rexlimivw | |- ( E. x e. On ( rank ` ( A X. B ) ) = suc x -> -. Lim ( rank ` ( A X. B ) ) ) |
| 43 | 1 2 | rankxplim3 | |- ( Lim ( rank ` ( A X. B ) ) <-> Lim U. ( rank ` ( A X. B ) ) ) |
| 44 | 42 43 | sylnib | |- ( E. x e. On ( rank ` ( A X. B ) ) = suc x -> -. Lim U. ( rank ` ( A X. B ) ) ) |
| 45 | 37 44 | syl6com | |- ( ( A X. B ) =/= (/) -> ( ( rank ` ( A u. B ) ) = suc C -> -. Lim U. ( rank ` ( A X. B ) ) ) ) |
| 46 | unixp0 | |- ( ( A X. B ) = (/) <-> U. ( A X. B ) = (/) ) |
|
| 47 | 24 | uniex | |- U. ( A X. B ) e. _V |
| 48 | 47 | rankeq0 | |- ( U. ( A X. B ) = (/) <-> ( rank ` U. ( A X. B ) ) = (/) ) |
| 49 | 6 | eqeq1i | |- ( ( rank ` U. ( A X. B ) ) = (/) <-> U. ( rank ` ( A X. B ) ) = (/) ) |
| 50 | 46 48 49 | 3bitri | |- ( ( A X. B ) = (/) <-> U. ( rank ` ( A X. B ) ) = (/) ) |
| 51 | 50 | necon3abii | |- ( ( A X. B ) =/= (/) <-> -. U. ( rank ` ( A X. B ) ) = (/) ) |
| 52 | onuni | |- ( ( rank ` ( A X. B ) ) e. On -> U. ( rank ` ( A X. B ) ) e. On ) |
|
| 53 | 27 52 | ax-mp | |- U. ( rank ` ( A X. B ) ) e. On |
| 54 | 53 | onordi | |- Ord U. ( rank ` ( A X. B ) ) |
| 55 | ordzsl | |- ( Ord U. ( rank ` ( A X. B ) ) <-> ( U. ( rank ` ( A X. B ) ) = (/) \/ E. x e. On U. ( rank ` ( A X. B ) ) = suc x \/ Lim U. ( rank ` ( A X. B ) ) ) ) |
|
| 56 | 54 55 | mpbi | |- ( U. ( rank ` ( A X. B ) ) = (/) \/ E. x e. On U. ( rank ` ( A X. B ) ) = suc x \/ Lim U. ( rank ` ( A X. B ) ) ) |
| 57 | 3orass | |- ( ( U. ( rank ` ( A X. B ) ) = (/) \/ E. x e. On U. ( rank ` ( A X. B ) ) = suc x \/ Lim U. ( rank ` ( A X. B ) ) ) <-> ( U. ( rank ` ( A X. B ) ) = (/) \/ ( E. x e. On U. ( rank ` ( A X. B ) ) = suc x \/ Lim U. ( rank ` ( A X. B ) ) ) ) ) |
|
| 58 | 56 57 | mpbi | |- ( U. ( rank ` ( A X. B ) ) = (/) \/ ( E. x e. On U. ( rank ` ( A X. B ) ) = suc x \/ Lim U. ( rank ` ( A X. B ) ) ) ) |
| 59 | 58 | ori | |- ( -. U. ( rank ` ( A X. B ) ) = (/) -> ( E. x e. On U. ( rank ` ( A X. B ) ) = suc x \/ Lim U. ( rank ` ( A X. B ) ) ) ) |
| 60 | 51 59 | sylbi | |- ( ( A X. B ) =/= (/) -> ( E. x e. On U. ( rank ` ( A X. B ) ) = suc x \/ Lim U. ( rank ` ( A X. B ) ) ) ) |
| 61 | 60 | ord | |- ( ( A X. B ) =/= (/) -> ( -. E. x e. On U. ( rank ` ( A X. B ) ) = suc x -> Lim U. ( rank ` ( A X. B ) ) ) ) |
| 62 | 61 | con1d | |- ( ( A X. B ) =/= (/) -> ( -. Lim U. ( rank ` ( A X. B ) ) -> E. x e. On U. ( rank ` ( A X. B ) ) = suc x ) ) |
| 63 | 45 62 | syld | |- ( ( A X. B ) =/= (/) -> ( ( rank ` ( A u. B ) ) = suc C -> E. x e. On U. ( rank ` ( A X. B ) ) = suc x ) ) |
| 64 | 63 | impcom | |- ( ( ( rank ` ( A u. B ) ) = suc C /\ ( A X. B ) =/= (/) ) -> E. x e. On U. ( rank ` ( A X. B ) ) = suc x ) |
| 65 | onsucuni2 | |- ( ( U. ( rank ` ( A X. B ) ) e. On /\ U. ( rank ` ( A X. B ) ) = suc x ) -> suc U. U. ( rank ` ( A X. B ) ) = U. ( rank ` ( A X. B ) ) ) |
|
| 66 | 53 65 | mpan | |- ( U. ( rank ` ( A X. B ) ) = suc x -> suc U. U. ( rank ` ( A X. B ) ) = U. ( rank ` ( A X. B ) ) ) |
| 67 | 66 | rexlimivw | |- ( E. x e. On U. ( rank ` ( A X. B ) ) = suc x -> suc U. U. ( rank ` ( A X. B ) ) = U. ( rank ` ( A X. B ) ) ) |
| 68 | 64 67 | syl | |- ( ( ( rank ` ( A u. B ) ) = suc C /\ ( A X. B ) =/= (/) ) -> suc U. U. ( rank ` ( A X. B ) ) = U. ( rank ` ( A X. B ) ) ) |
| 69 | 12 68 | eqtrd | |- ( ( ( rank ` ( A u. B ) ) = suc C /\ ( A X. B ) =/= (/) ) -> suc ( rank ` ( A u. B ) ) = U. ( rank ` ( A X. B ) ) ) |
| 70 | suc11reg | |- ( suc suc ( rank ` ( A u. B ) ) = suc U. ( rank ` ( A X. B ) ) <-> suc ( rank ` ( A u. B ) ) = U. ( rank ` ( A X. B ) ) ) |
|
| 71 | 69 70 | sylibr | |- ( ( ( rank ` ( A u. B ) ) = suc C /\ ( A X. B ) =/= (/) ) -> suc suc ( rank ` ( A u. B ) ) = suc U. ( rank ` ( A X. B ) ) ) |
| 72 | 37 | imp | |- ( ( ( rank ` ( A u. B ) ) = suc C /\ ( A X. B ) =/= (/) ) -> E. x e. On ( rank ` ( A X. B ) ) = suc x ) |
| 73 | onsucuni2 | |- ( ( ( rank ` ( A X. B ) ) e. On /\ ( rank ` ( A X. B ) ) = suc x ) -> suc U. ( rank ` ( A X. B ) ) = ( rank ` ( A X. B ) ) ) |
|
| 74 | 27 73 | mpan | |- ( ( rank ` ( A X. B ) ) = suc x -> suc U. ( rank ` ( A X. B ) ) = ( rank ` ( A X. B ) ) ) |
| 75 | 74 | rexlimivw | |- ( E. x e. On ( rank ` ( A X. B ) ) = suc x -> suc U. ( rank ` ( A X. B ) ) = ( rank ` ( A X. B ) ) ) |
| 76 | 72 75 | syl | |- ( ( ( rank ` ( A u. B ) ) = suc C /\ ( A X. B ) =/= (/) ) -> suc U. ( rank ` ( A X. B ) ) = ( rank ` ( A X. B ) ) ) |
| 77 | 71 76 | eqtr2d | |- ( ( ( rank ` ( A u. B ) ) = suc C /\ ( A X. B ) =/= (/) ) -> ( rank ` ( A X. B ) ) = suc suc ( rank ` ( A u. B ) ) ) |