This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The successor operation behaves like a one-to-one function (assuming the Axiom of Regularity). Exercise 35 of Enderton p. 208 and its converse. (Contributed by NM, 25-Oct-2003)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | suc11reg | |- ( suc A = suc B <-> A = B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2lp | |- -. ( A e. B /\ B e. A ) |
|
| 2 | ianor | |- ( -. ( A e. B /\ B e. A ) <-> ( -. A e. B \/ -. B e. A ) ) |
|
| 3 | 1 2 | mpbi | |- ( -. A e. B \/ -. B e. A ) |
| 4 | sucidg | |- ( A e. _V -> A e. suc A ) |
|
| 5 | eleq2 | |- ( suc A = suc B -> ( A e. suc A <-> A e. suc B ) ) |
|
| 6 | 4 5 | syl5ibcom | |- ( A e. _V -> ( suc A = suc B -> A e. suc B ) ) |
| 7 | elsucg | |- ( A e. _V -> ( A e. suc B <-> ( A e. B \/ A = B ) ) ) |
|
| 8 | 6 7 | sylibd | |- ( A e. _V -> ( suc A = suc B -> ( A e. B \/ A = B ) ) ) |
| 9 | 8 | imp | |- ( ( A e. _V /\ suc A = suc B ) -> ( A e. B \/ A = B ) ) |
| 10 | 9 | ord | |- ( ( A e. _V /\ suc A = suc B ) -> ( -. A e. B -> A = B ) ) |
| 11 | 10 | ex | |- ( A e. _V -> ( suc A = suc B -> ( -. A e. B -> A = B ) ) ) |
| 12 | 11 | com23 | |- ( A e. _V -> ( -. A e. B -> ( suc A = suc B -> A = B ) ) ) |
| 13 | sucidg | |- ( B e. _V -> B e. suc B ) |
|
| 14 | eleq2 | |- ( suc A = suc B -> ( B e. suc A <-> B e. suc B ) ) |
|
| 15 | 13 14 | syl5ibrcom | |- ( B e. _V -> ( suc A = suc B -> B e. suc A ) ) |
| 16 | elsucg | |- ( B e. _V -> ( B e. suc A <-> ( B e. A \/ B = A ) ) ) |
|
| 17 | 15 16 | sylibd | |- ( B e. _V -> ( suc A = suc B -> ( B e. A \/ B = A ) ) ) |
| 18 | 17 | imp | |- ( ( B e. _V /\ suc A = suc B ) -> ( B e. A \/ B = A ) ) |
| 19 | 18 | ord | |- ( ( B e. _V /\ suc A = suc B ) -> ( -. B e. A -> B = A ) ) |
| 20 | eqcom | |- ( B = A <-> A = B ) |
|
| 21 | 19 20 | imbitrdi | |- ( ( B e. _V /\ suc A = suc B ) -> ( -. B e. A -> A = B ) ) |
| 22 | 21 | ex | |- ( B e. _V -> ( suc A = suc B -> ( -. B e. A -> A = B ) ) ) |
| 23 | 22 | com23 | |- ( B e. _V -> ( -. B e. A -> ( suc A = suc B -> A = B ) ) ) |
| 24 | 12 23 | jaao | |- ( ( A e. _V /\ B e. _V ) -> ( ( -. A e. B \/ -. B e. A ) -> ( suc A = suc B -> A = B ) ) ) |
| 25 | 3 24 | mpi | |- ( ( A e. _V /\ B e. _V ) -> ( suc A = suc B -> A = B ) ) |
| 26 | sucexb | |- ( A e. _V <-> suc A e. _V ) |
|
| 27 | sucexb | |- ( B e. _V <-> suc B e. _V ) |
|
| 28 | 27 | notbii | |- ( -. B e. _V <-> -. suc B e. _V ) |
| 29 | nelneq | |- ( ( suc A e. _V /\ -. suc B e. _V ) -> -. suc A = suc B ) |
|
| 30 | 26 28 29 | syl2anb | |- ( ( A e. _V /\ -. B e. _V ) -> -. suc A = suc B ) |
| 31 | 30 | pm2.21d | |- ( ( A e. _V /\ -. B e. _V ) -> ( suc A = suc B -> A = B ) ) |
| 32 | eqcom | |- ( suc A = suc B <-> suc B = suc A ) |
|
| 33 | 26 | notbii | |- ( -. A e. _V <-> -. suc A e. _V ) |
| 34 | nelneq | |- ( ( suc B e. _V /\ -. suc A e. _V ) -> -. suc B = suc A ) |
|
| 35 | 27 33 34 | syl2anb | |- ( ( B e. _V /\ -. A e. _V ) -> -. suc B = suc A ) |
| 36 | 35 | ancoms | |- ( ( -. A e. _V /\ B e. _V ) -> -. suc B = suc A ) |
| 37 | 36 | pm2.21d | |- ( ( -. A e. _V /\ B e. _V ) -> ( suc B = suc A -> A = B ) ) |
| 38 | 32 37 | biimtrid | |- ( ( -. A e. _V /\ B e. _V ) -> ( suc A = suc B -> A = B ) ) |
| 39 | sucprc | |- ( -. A e. _V -> suc A = A ) |
|
| 40 | sucprc | |- ( -. B e. _V -> suc B = B ) |
|
| 41 | 39 40 | eqeqan12d | |- ( ( -. A e. _V /\ -. B e. _V ) -> ( suc A = suc B <-> A = B ) ) |
| 42 | 41 | biimpd | |- ( ( -. A e. _V /\ -. B e. _V ) -> ( suc A = suc B -> A = B ) ) |
| 43 | 25 31 38 42 | 4cases | |- ( suc A = suc B -> A = B ) |
| 44 | suceq | |- ( A = B -> suc A = suc B ) |
|
| 45 | 43 44 | impbii | |- ( suc A = suc B <-> A = B ) |