This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the rank of a Cartesian product is a limit ordinal, so is the rank of the union of its arguments. (Contributed by NM, 19-Sep-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rankxplim.1 | |- A e. _V |
|
| rankxplim.2 | |- B e. _V |
||
| Assertion | rankxplim2 | |- ( Lim ( rank ` ( A X. B ) ) -> Lim ( rank ` ( A u. B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankxplim.1 | |- A e. _V |
|
| 2 | rankxplim.2 | |- B e. _V |
|
| 3 | 0ellim | |- ( Lim ( rank ` ( A X. B ) ) -> (/) e. ( rank ` ( A X. B ) ) ) |
|
| 4 | n0i | |- ( (/) e. ( rank ` ( A X. B ) ) -> -. ( rank ` ( A X. B ) ) = (/) ) |
|
| 5 | 3 4 | syl | |- ( Lim ( rank ` ( A X. B ) ) -> -. ( rank ` ( A X. B ) ) = (/) ) |
| 6 | df-ne | |- ( ( A X. B ) =/= (/) <-> -. ( A X. B ) = (/) ) |
|
| 7 | 1 2 | xpex | |- ( A X. B ) e. _V |
| 8 | 7 | rankeq0 | |- ( ( A X. B ) = (/) <-> ( rank ` ( A X. B ) ) = (/) ) |
| 9 | 8 | notbii | |- ( -. ( A X. B ) = (/) <-> -. ( rank ` ( A X. B ) ) = (/) ) |
| 10 | 6 9 | bitr2i | |- ( -. ( rank ` ( A X. B ) ) = (/) <-> ( A X. B ) =/= (/) ) |
| 11 | 5 10 | sylib | |- ( Lim ( rank ` ( A X. B ) ) -> ( A X. B ) =/= (/) ) |
| 12 | limuni2 | |- ( Lim ( rank ` ( A X. B ) ) -> Lim U. ( rank ` ( A X. B ) ) ) |
|
| 13 | limuni2 | |- ( Lim U. ( rank ` ( A X. B ) ) -> Lim U. U. ( rank ` ( A X. B ) ) ) |
|
| 14 | 12 13 | syl | |- ( Lim ( rank ` ( A X. B ) ) -> Lim U. U. ( rank ` ( A X. B ) ) ) |
| 15 | rankuni | |- ( rank ` U. U. ( A X. B ) ) = U. ( rank ` U. ( A X. B ) ) |
|
| 16 | rankuni | |- ( rank ` U. ( A X. B ) ) = U. ( rank ` ( A X. B ) ) |
|
| 17 | 16 | unieqi | |- U. ( rank ` U. ( A X. B ) ) = U. U. ( rank ` ( A X. B ) ) |
| 18 | 15 17 | eqtr2i | |- U. U. ( rank ` ( A X. B ) ) = ( rank ` U. U. ( A X. B ) ) |
| 19 | unixp | |- ( ( A X. B ) =/= (/) -> U. U. ( A X. B ) = ( A u. B ) ) |
|
| 20 | 19 | fveq2d | |- ( ( A X. B ) =/= (/) -> ( rank ` U. U. ( A X. B ) ) = ( rank ` ( A u. B ) ) ) |
| 21 | 18 20 | eqtrid | |- ( ( A X. B ) =/= (/) -> U. U. ( rank ` ( A X. B ) ) = ( rank ` ( A u. B ) ) ) |
| 22 | limeq | |- ( U. U. ( rank ` ( A X. B ) ) = ( rank ` ( A u. B ) ) -> ( Lim U. U. ( rank ` ( A X. B ) ) <-> Lim ( rank ` ( A u. B ) ) ) ) |
|
| 23 | 21 22 | syl | |- ( ( A X. B ) =/= (/) -> ( Lim U. U. ( rank ` ( A X. B ) ) <-> Lim ( rank ` ( A u. B ) ) ) ) |
| 24 | 14 23 | imbitrid | |- ( ( A X. B ) =/= (/) -> ( Lim ( rank ` ( A X. B ) ) -> Lim ( rank ` ( A u. B ) ) ) ) |
| 25 | 11 24 | mpcom | |- ( Lim ( rank ` ( A X. B ) ) -> Lim ( rank ` ( A u. B ) ) ) |