This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A successor is not a limit ordinal. (Contributed by NM, 25-Mar-1995) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nlimsucg | |- ( A e. V -> -. Lim suc A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limord | |- ( Lim suc A -> Ord suc A ) |
|
| 2 | ordsuc | |- ( Ord A <-> Ord suc A ) |
|
| 3 | 1 2 | sylibr | |- ( Lim suc A -> Ord A ) |
| 4 | limuni | |- ( Lim suc A -> suc A = U. suc A ) |
|
| 5 | ordunisuc | |- ( Ord A -> U. suc A = A ) |
|
| 6 | 5 | eqeq2d | |- ( Ord A -> ( suc A = U. suc A <-> suc A = A ) ) |
| 7 | ordirr | |- ( Ord A -> -. A e. A ) |
|
| 8 | eleq2 | |- ( suc A = A -> ( A e. suc A <-> A e. A ) ) |
|
| 9 | 8 | notbid | |- ( suc A = A -> ( -. A e. suc A <-> -. A e. A ) ) |
| 10 | 7 9 | syl5ibrcom | |- ( Ord A -> ( suc A = A -> -. A e. suc A ) ) |
| 11 | sucidg | |- ( A e. V -> A e. suc A ) |
|
| 12 | 11 | con3i | |- ( -. A e. suc A -> -. A e. V ) |
| 13 | 10 12 | syl6 | |- ( Ord A -> ( suc A = A -> -. A e. V ) ) |
| 14 | 6 13 | sylbid | |- ( Ord A -> ( suc A = U. suc A -> -. A e. V ) ) |
| 15 | 3 4 14 | sylc | |- ( Lim suc A -> -. A e. V ) |
| 16 | 15 | con2i | |- ( A e. V -> -. Lim suc A ) |