This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsucuni2 | |- ( ( A e. On /\ A = suc B ) -> suc U. A = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( A = suc B -> ( A e. On <-> suc B e. On ) ) |
|
| 2 | 1 | biimpac | |- ( ( A e. On /\ A = suc B ) -> suc B e. On ) |
| 3 | eloni | |- ( suc B e. On -> Ord suc B ) |
|
| 4 | ordsuc | |- ( Ord B <-> Ord suc B ) |
|
| 5 | ordunisuc | |- ( Ord B -> U. suc B = B ) |
|
| 6 | 4 5 | sylbir | |- ( Ord suc B -> U. suc B = B ) |
| 7 | suceq | |- ( U. suc B = B -> suc U. suc B = suc B ) |
|
| 8 | 6 7 | syl | |- ( Ord suc B -> suc U. suc B = suc B ) |
| 9 | ordunisuc | |- ( Ord suc B -> U. suc suc B = suc B ) |
|
| 10 | 8 9 | eqtr4d | |- ( Ord suc B -> suc U. suc B = U. suc suc B ) |
| 11 | 2 3 10 | 3syl | |- ( ( A e. On /\ A = suc B ) -> suc U. suc B = U. suc suc B ) |
| 12 | unieq | |- ( A = suc B -> U. A = U. suc B ) |
|
| 13 | suceq | |- ( U. A = U. suc B -> suc U. A = suc U. suc B ) |
|
| 14 | 12 13 | syl | |- ( A = suc B -> suc U. A = suc U. suc B ) |
| 15 | suceq | |- ( A = suc B -> suc A = suc suc B ) |
|
| 16 | 15 | unieqd | |- ( A = suc B -> U. suc A = U. suc suc B ) |
| 17 | 14 16 | eqeq12d | |- ( A = suc B -> ( suc U. A = U. suc A <-> suc U. suc B = U. suc suc B ) ) |
| 18 | 11 17 | imbitrrid | |- ( A = suc B -> ( ( A e. On /\ A = suc B ) -> suc U. A = U. suc A ) ) |
| 19 | 18 | anabsi7 | |- ( ( A e. On /\ A = suc B ) -> suc U. A = U. suc A ) |
| 20 | eloni | |- ( A e. On -> Ord A ) |
|
| 21 | ordunisuc | |- ( Ord A -> U. suc A = A ) |
|
| 22 | 20 21 | syl | |- ( A e. On -> U. suc A = A ) |
| 23 | 22 | adantr | |- ( ( A e. On /\ A = suc B ) -> U. suc A = A ) |
| 24 | 19 23 | eqtrd | |- ( ( A e. On /\ A = suc B ) -> suc U. A = A ) |