This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for radcnvlt1 , radcnvle . If X is a point closer to zero than Y and the power series converges at Y , then it converges at X . (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| radcnv.a | |- ( ph -> A : NN0 --> CC ) |
||
| psergf.x | |- ( ph -> X e. CC ) |
||
| radcnvlem2.y | |- ( ph -> Y e. CC ) |
||
| radcnvlem2.a | |- ( ph -> ( abs ` X ) < ( abs ` Y ) ) |
||
| radcnvlem2.c | |- ( ph -> seq 0 ( + , ( G ` Y ) ) e. dom ~~> ) |
||
| Assertion | radcnvlem3 | |- ( ph -> seq 0 ( + , ( G ` X ) ) e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | radcnv.a | |- ( ph -> A : NN0 --> CC ) |
|
| 3 | psergf.x | |- ( ph -> X e. CC ) |
|
| 4 | radcnvlem2.y | |- ( ph -> Y e. CC ) |
|
| 5 | radcnvlem2.a | |- ( ph -> ( abs ` X ) < ( abs ` Y ) ) |
|
| 6 | radcnvlem2.c | |- ( ph -> seq 0 ( + , ( G ` Y ) ) e. dom ~~> ) |
|
| 7 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 8 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 9 | 1 2 3 | psergf | |- ( ph -> ( G ` X ) : NN0 --> CC ) |
| 10 | fvco3 | |- ( ( ( G ` X ) : NN0 --> CC /\ k e. NN0 ) -> ( ( abs o. ( G ` X ) ) ` k ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
|
| 11 | 9 10 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( ( abs o. ( G ` X ) ) ` k ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
| 12 | 9 | ffvelcdmda | |- ( ( ph /\ k e. NN0 ) -> ( ( G ` X ) ` k ) e. CC ) |
| 13 | 1 2 3 4 5 6 | radcnvlem2 | |- ( ph -> seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) |
| 14 | 7 8 11 12 13 | abscvgcvg | |- ( ph -> seq 0 ( + , ( G ` X ) ) e. dom ~~> ) |