This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for radcnvlt1 , radcnvle . If X is a point closer to zero than Y and the power series converges at Y , then it converges absolutely at X . (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| radcnv.a | |- ( ph -> A : NN0 --> CC ) |
||
| psergf.x | |- ( ph -> X e. CC ) |
||
| radcnvlem2.y | |- ( ph -> Y e. CC ) |
||
| radcnvlem2.a | |- ( ph -> ( abs ` X ) < ( abs ` Y ) ) |
||
| radcnvlem2.c | |- ( ph -> seq 0 ( + , ( G ` Y ) ) e. dom ~~> ) |
||
| Assertion | radcnvlem2 | |- ( ph -> seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | radcnv.a | |- ( ph -> A : NN0 --> CC ) |
|
| 3 | psergf.x | |- ( ph -> X e. CC ) |
|
| 4 | radcnvlem2.y | |- ( ph -> Y e. CC ) |
|
| 5 | radcnvlem2.a | |- ( ph -> ( abs ` X ) < ( abs ` Y ) ) |
|
| 6 | radcnvlem2.c | |- ( ph -> seq 0 ( + , ( G ` Y ) ) e. dom ~~> ) |
|
| 7 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 8 | 1nn0 | |- 1 e. NN0 |
|
| 9 | 8 | a1i | |- ( ph -> 1 e. NN0 ) |
| 10 | id | |- ( m = k -> m = k ) |
|
| 11 | 2fveq3 | |- ( m = k -> ( abs ` ( ( G ` X ) ` m ) ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
|
| 12 | 10 11 | oveq12d | |- ( m = k -> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) = ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
| 13 | eqid | |- ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) = ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) |
|
| 14 | ovex | |- ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) e. _V |
|
| 15 | 12 13 14 | fvmpt | |- ( k e. NN0 -> ( ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) ` k ) = ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
| 16 | 15 | adantl | |- ( ( ph /\ k e. NN0 ) -> ( ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) ` k ) = ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
| 17 | nn0re | |- ( k e. NN0 -> k e. RR ) |
|
| 18 | 17 | adantl | |- ( ( ph /\ k e. NN0 ) -> k e. RR ) |
| 19 | 1 2 3 | psergf | |- ( ph -> ( G ` X ) : NN0 --> CC ) |
| 20 | 19 | ffvelcdmda | |- ( ( ph /\ k e. NN0 ) -> ( ( G ` X ) ` k ) e. CC ) |
| 21 | 20 | abscld | |- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( G ` X ) ` k ) ) e. RR ) |
| 22 | 18 21 | remulcld | |- ( ( ph /\ k e. NN0 ) -> ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) e. RR ) |
| 23 | 16 22 | eqeltrd | |- ( ( ph /\ k e. NN0 ) -> ( ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) ` k ) e. RR ) |
| 24 | fvco3 | |- ( ( ( G ` X ) : NN0 --> CC /\ k e. NN0 ) -> ( ( abs o. ( G ` X ) ) ` k ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
|
| 25 | 19 24 | sylan | |- ( ( ph /\ k e. NN0 ) -> ( ( abs o. ( G ` X ) ) ` k ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
| 26 | 21 | recnd | |- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( G ` X ) ` k ) ) e. CC ) |
| 27 | 25 26 | eqeltrd | |- ( ( ph /\ k e. NN0 ) -> ( ( abs o. ( G ` X ) ) ` k ) e. CC ) |
| 28 | 12 | cbvmptv | |- ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) = ( k e. NN0 |-> ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
| 29 | 1 2 3 4 5 6 28 | radcnvlem1 | |- ( ph -> seq 0 ( + , ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) ) e. dom ~~> ) |
| 30 | 1red | |- ( ph -> 1 e. RR ) |
|
| 31 | 1red | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> 1 e. RR ) |
|
| 32 | elnnuz | |- ( k e. NN <-> k e. ( ZZ>= ` 1 ) ) |
|
| 33 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 34 | 32 33 | sylbir | |- ( k e. ( ZZ>= ` 1 ) -> k e. NN0 ) |
| 35 | 34 18 | sylan2 | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> k e. RR ) |
| 36 | 34 21 | sylan2 | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( abs ` ( ( G ` X ) ` k ) ) e. RR ) |
| 37 | 20 | absge0d | |- ( ( ph /\ k e. NN0 ) -> 0 <_ ( abs ` ( ( G ` X ) ` k ) ) ) |
| 38 | 34 37 | sylan2 | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> 0 <_ ( abs ` ( ( G ` X ) ` k ) ) ) |
| 39 | eluzle | |- ( k e. ( ZZ>= ` 1 ) -> 1 <_ k ) |
|
| 40 | 39 | adantl | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> 1 <_ k ) |
| 41 | 31 35 36 38 40 | lemul1ad | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( 1 x. ( abs ` ( ( G ` X ) ` k ) ) ) <_ ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
| 42 | absidm | |- ( ( ( G ` X ) ` k ) e. CC -> ( abs ` ( abs ` ( ( G ` X ) ` k ) ) ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
|
| 43 | 20 42 | syl | |- ( ( ph /\ k e. NN0 ) -> ( abs ` ( abs ` ( ( G ` X ) ` k ) ) ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
| 44 | 25 | fveq2d | |- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( abs o. ( G ` X ) ) ` k ) ) = ( abs ` ( abs ` ( ( G ` X ) ` k ) ) ) ) |
| 45 | 26 | mullidd | |- ( ( ph /\ k e. NN0 ) -> ( 1 x. ( abs ` ( ( G ` X ) ` k ) ) ) = ( abs ` ( ( G ` X ) ` k ) ) ) |
| 46 | 43 44 45 | 3eqtr4d | |- ( ( ph /\ k e. NN0 ) -> ( abs ` ( ( abs o. ( G ` X ) ) ` k ) ) = ( 1 x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
| 47 | 34 46 | sylan2 | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( abs ` ( ( abs o. ( G ` X ) ) ` k ) ) = ( 1 x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
| 48 | 16 | oveq2d | |- ( ( ph /\ k e. NN0 ) -> ( 1 x. ( ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) ` k ) ) = ( 1 x. ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) ) |
| 49 | 22 | recnd | |- ( ( ph /\ k e. NN0 ) -> ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) e. CC ) |
| 50 | 49 | mullidd | |- ( ( ph /\ k e. NN0 ) -> ( 1 x. ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) = ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
| 51 | 48 50 | eqtrd | |- ( ( ph /\ k e. NN0 ) -> ( 1 x. ( ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) ` k ) ) = ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
| 52 | 34 51 | sylan2 | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( 1 x. ( ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) ` k ) ) = ( k x. ( abs ` ( ( G ` X ) ` k ) ) ) ) |
| 53 | 41 47 52 | 3brtr4d | |- ( ( ph /\ k e. ( ZZ>= ` 1 ) ) -> ( abs ` ( ( abs o. ( G ` X ) ) ` k ) ) <_ ( 1 x. ( ( m e. NN0 |-> ( m x. ( abs ` ( ( G ` X ) ` m ) ) ) ) ` k ) ) ) |
| 54 | 7 9 23 27 29 30 53 | cvgcmpce | |- ( ph -> seq 0 ( + , ( abs o. ( G ` X ) ) ) e. dom ~~> ) |