This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for radcnvlt1 , radcnvle . If X is a point closer to zero than Y and the power series converges at Y , then it converges at X . (Contributed by Mario Carneiro, 31-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pser.g | ||
| radcnv.a | |||
| psergf.x | |||
| radcnvlem2.y | |||
| radcnvlem2.a | |||
| radcnvlem2.c | |||
| Assertion | radcnvlem3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | ||
| 2 | radcnv.a | ||
| 3 | psergf.x | ||
| 4 | radcnvlem2.y | ||
| 5 | radcnvlem2.a | ||
| 6 | radcnvlem2.c | ||
| 7 | nn0uz | ||
| 8 | 0zd | ||
| 9 | 1 2 3 | psergf | |
| 10 | fvco3 | ||
| 11 | 9 10 | sylan | |
| 12 | 9 | ffvelcdmda | |
| 13 | 1 2 3 4 5 6 | radcnvlem2 | |
| 14 | 7 8 11 12 13 | abscvgcvg |