This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate shorter proof of r1pw based on the additional axioms ax-reg and ax-inf2 . (Contributed by Raph Levien, 29-May-2004) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r1pwALT | |- ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( x = A -> ( x e. ( R1 ` B ) <-> A e. ( R1 ` B ) ) ) |
|
| 2 | pweq | |- ( x = A -> ~P x = ~P A ) |
|
| 3 | 2 | eleq1d | |- ( x = A -> ( ~P x e. ( R1 ` suc B ) <-> ~P A e. ( R1 ` suc B ) ) ) |
| 4 | 1 3 | bibi12d | |- ( x = A -> ( ( x e. ( R1 ` B ) <-> ~P x e. ( R1 ` suc B ) ) <-> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) ) |
| 5 | 4 | imbi2d | |- ( x = A -> ( ( B e. On -> ( x e. ( R1 ` B ) <-> ~P x e. ( R1 ` suc B ) ) ) <-> ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) ) ) |
| 6 | vex | |- x e. _V |
|
| 7 | 6 | rankr1a | |- ( B e. On -> ( x e. ( R1 ` B ) <-> ( rank ` x ) e. B ) ) |
| 8 | eloni | |- ( B e. On -> Ord B ) |
|
| 9 | ordsucelsuc | |- ( Ord B -> ( ( rank ` x ) e. B <-> suc ( rank ` x ) e. suc B ) ) |
|
| 10 | 8 9 | syl | |- ( B e. On -> ( ( rank ` x ) e. B <-> suc ( rank ` x ) e. suc B ) ) |
| 11 | 7 10 | bitrd | |- ( B e. On -> ( x e. ( R1 ` B ) <-> suc ( rank ` x ) e. suc B ) ) |
| 12 | 6 | rankpw | |- ( rank ` ~P x ) = suc ( rank ` x ) |
| 13 | 12 | eleq1i | |- ( ( rank ` ~P x ) e. suc B <-> suc ( rank ` x ) e. suc B ) |
| 14 | 11 13 | bitr4di | |- ( B e. On -> ( x e. ( R1 ` B ) <-> ( rank ` ~P x ) e. suc B ) ) |
| 15 | onsuc | |- ( B e. On -> suc B e. On ) |
|
| 16 | 6 | pwex | |- ~P x e. _V |
| 17 | 16 | rankr1a | |- ( suc B e. On -> ( ~P x e. ( R1 ` suc B ) <-> ( rank ` ~P x ) e. suc B ) ) |
| 18 | 15 17 | syl | |- ( B e. On -> ( ~P x e. ( R1 ` suc B ) <-> ( rank ` ~P x ) e. suc B ) ) |
| 19 | 14 18 | bitr4d | |- ( B e. On -> ( x e. ( R1 ` B ) <-> ~P x e. ( R1 ` suc B ) ) ) |
| 20 | 5 19 | vtoclg | |- ( A e. _V -> ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) ) |
| 21 | elex | |- ( A e. ( R1 ` B ) -> A e. _V ) |
|
| 22 | elex | |- ( ~P A e. ( R1 ` suc B ) -> ~P A e. _V ) |
|
| 23 | pwexb | |- ( A e. _V <-> ~P A e. _V ) |
|
| 24 | 22 23 | sylibr | |- ( ~P A e. ( R1 ` suc B ) -> A e. _V ) |
| 25 | 21 24 | pm5.21ni | |- ( -. A e. _V -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) |
| 26 | 25 | a1d | |- ( -. A e. _V -> ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) ) |
| 27 | 20 26 | pm2.61i | |- ( B e. On -> ( A e. ( R1 ` B ) <-> ~P A e. ( R1 ` suc B ) ) ) |