This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The rank of a power set. Part of Exercise 30 of Enderton p. 207. (Contributed by Mario Carneiro, 3-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rankpwi | |- ( A e. U. ( R1 " On ) -> ( rank ` ~P A ) = suc ( rank ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rankidn | |- ( A e. U. ( R1 " On ) -> -. A e. ( R1 ` ( rank ` A ) ) ) |
|
| 2 | rankon | |- ( rank ` A ) e. On |
|
| 3 | r1suc | |- ( ( rank ` A ) e. On -> ( R1 ` suc ( rank ` A ) ) = ~P ( R1 ` ( rank ` A ) ) ) |
|
| 4 | 2 3 | ax-mp | |- ( R1 ` suc ( rank ` A ) ) = ~P ( R1 ` ( rank ` A ) ) |
| 5 | 4 | eleq2i | |- ( ~P A e. ( R1 ` suc ( rank ` A ) ) <-> ~P A e. ~P ( R1 ` ( rank ` A ) ) ) |
| 6 | elpwi | |- ( ~P A e. ~P ( R1 ` ( rank ` A ) ) -> ~P A C_ ( R1 ` ( rank ` A ) ) ) |
|
| 7 | pwidg | |- ( A e. U. ( R1 " On ) -> A e. ~P A ) |
|
| 8 | ssel | |- ( ~P A C_ ( R1 ` ( rank ` A ) ) -> ( A e. ~P A -> A e. ( R1 ` ( rank ` A ) ) ) ) |
|
| 9 | 6 7 8 | syl2imc | |- ( A e. U. ( R1 " On ) -> ( ~P A e. ~P ( R1 ` ( rank ` A ) ) -> A e. ( R1 ` ( rank ` A ) ) ) ) |
| 10 | 5 9 | biimtrid | |- ( A e. U. ( R1 " On ) -> ( ~P A e. ( R1 ` suc ( rank ` A ) ) -> A e. ( R1 ` ( rank ` A ) ) ) ) |
| 11 | 1 10 | mtod | |- ( A e. U. ( R1 " On ) -> -. ~P A e. ( R1 ` suc ( rank ` A ) ) ) |
| 12 | r1rankidb | |- ( A e. U. ( R1 " On ) -> A C_ ( R1 ` ( rank ` A ) ) ) |
|
| 13 | 12 | sspwd | |- ( A e. U. ( R1 " On ) -> ~P A C_ ~P ( R1 ` ( rank ` A ) ) ) |
| 14 | 13 4 | sseqtrrdi | |- ( A e. U. ( R1 " On ) -> ~P A C_ ( R1 ` suc ( rank ` A ) ) ) |
| 15 | fvex | |- ( R1 ` suc ( rank ` A ) ) e. _V |
|
| 16 | 15 | elpw2 | |- ( ~P A e. ~P ( R1 ` suc ( rank ` A ) ) <-> ~P A C_ ( R1 ` suc ( rank ` A ) ) ) |
| 17 | 14 16 | sylibr | |- ( A e. U. ( R1 " On ) -> ~P A e. ~P ( R1 ` suc ( rank ` A ) ) ) |
| 18 | 2 | onsuci | |- suc ( rank ` A ) e. On |
| 19 | r1suc | |- ( suc ( rank ` A ) e. On -> ( R1 ` suc suc ( rank ` A ) ) = ~P ( R1 ` suc ( rank ` A ) ) ) |
|
| 20 | 18 19 | ax-mp | |- ( R1 ` suc suc ( rank ` A ) ) = ~P ( R1 ` suc ( rank ` A ) ) |
| 21 | 17 20 | eleqtrrdi | |- ( A e. U. ( R1 " On ) -> ~P A e. ( R1 ` suc suc ( rank ` A ) ) ) |
| 22 | pwwf | |- ( A e. U. ( R1 " On ) <-> ~P A e. U. ( R1 " On ) ) |
|
| 23 | rankr1c | |- ( ~P A e. U. ( R1 " On ) -> ( suc ( rank ` A ) = ( rank ` ~P A ) <-> ( -. ~P A e. ( R1 ` suc ( rank ` A ) ) /\ ~P A e. ( R1 ` suc suc ( rank ` A ) ) ) ) ) |
|
| 24 | 22 23 | sylbi | |- ( A e. U. ( R1 " On ) -> ( suc ( rank ` A ) = ( rank ` ~P A ) <-> ( -. ~P A e. ( R1 ` suc ( rank ` A ) ) /\ ~P A e. ( R1 ` suc suc ( rank ` A ) ) ) ) ) |
| 25 | 11 21 24 | mpbir2and | |- ( A e. U. ( R1 " On ) -> suc ( rank ` A ) = ( rank ` ~P A ) ) |
| 26 | 25 | eqcomd | |- ( A e. U. ( R1 " On ) -> ( rank ` ~P A ) = suc ( rank ` A ) ) |