This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There are no subrings of the complex numbers strictly between RR and CC . (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cnsubrg | |- ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) -> R e. { RR , CC } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssdif0 | |- ( R C_ RR <-> ( R \ RR ) = (/) ) |
|
| 2 | simpr | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ R C_ RR ) -> R C_ RR ) |
|
| 3 | simplr | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ R C_ RR ) -> RR C_ R ) |
|
| 4 | 2 3 | eqssd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ R C_ RR ) -> R = RR ) |
| 5 | 4 | orcd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ R C_ RR ) -> ( R = RR \/ R = CC ) ) |
| 6 | 1 5 | sylan2br | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( R \ RR ) = (/) ) -> ( R = RR \/ R = CC ) ) |
| 7 | n0 | |- ( ( R \ RR ) =/= (/) <-> E. x x e. ( R \ RR ) ) |
|
| 8 | simpll | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> R e. ( SubRing ` CCfld ) ) |
|
| 9 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 10 | 9 | subrgss | |- ( R e. ( SubRing ` CCfld ) -> R C_ CC ) |
| 11 | 8 10 | syl | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> R C_ CC ) |
| 12 | replim | |- ( y e. CC -> y = ( ( Re ` y ) + ( _i x. ( Im ` y ) ) ) ) |
|
| 13 | 12 | ad2antll | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> y = ( ( Re ` y ) + ( _i x. ( Im ` y ) ) ) ) |
| 14 | simpll | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> R e. ( SubRing ` CCfld ) ) |
|
| 15 | simplr | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> RR C_ R ) |
|
| 16 | recl | |- ( y e. CC -> ( Re ` y ) e. RR ) |
|
| 17 | 16 | ad2antll | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( Re ` y ) e. RR ) |
| 18 | 15 17 | sseldd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( Re ` y ) e. R ) |
| 19 | ax-icn | |- _i e. CC |
|
| 20 | 19 | a1i | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> _i e. CC ) |
| 21 | eldifi | |- ( x e. ( R \ RR ) -> x e. R ) |
|
| 22 | 21 | adantl | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> x e. R ) |
| 23 | 11 22 | sseldd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> x e. CC ) |
| 24 | imcl | |- ( x e. CC -> ( Im ` x ) e. RR ) |
|
| 25 | 23 24 | syl | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( Im ` x ) e. RR ) |
| 26 | 25 | recnd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( Im ` x ) e. CC ) |
| 27 | eldifn | |- ( x e. ( R \ RR ) -> -. x e. RR ) |
|
| 28 | 27 | adantl | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> -. x e. RR ) |
| 29 | reim0b | |- ( x e. CC -> ( x e. RR <-> ( Im ` x ) = 0 ) ) |
|
| 30 | 29 | necon3bbid | |- ( x e. CC -> ( -. x e. RR <-> ( Im ` x ) =/= 0 ) ) |
| 31 | 23 30 | syl | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( -. x e. RR <-> ( Im ` x ) =/= 0 ) ) |
| 32 | 28 31 | mpbid | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( Im ` x ) =/= 0 ) |
| 33 | 20 26 32 | divcan4d | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( ( _i x. ( Im ` x ) ) / ( Im ` x ) ) = _i ) |
| 34 | mulcl | |- ( ( _i e. CC /\ ( Im ` x ) e. CC ) -> ( _i x. ( Im ` x ) ) e. CC ) |
|
| 35 | 19 26 34 | sylancr | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( _i x. ( Im ` x ) ) e. CC ) |
| 36 | 35 26 32 | divrecd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( ( _i x. ( Im ` x ) ) / ( Im ` x ) ) = ( ( _i x. ( Im ` x ) ) x. ( 1 / ( Im ` x ) ) ) ) |
| 37 | 33 36 | eqtr3d | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> _i = ( ( _i x. ( Im ` x ) ) x. ( 1 / ( Im ` x ) ) ) ) |
| 38 | 23 | recld | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( Re ` x ) e. RR ) |
| 39 | 38 | recnd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( Re ` x ) e. CC ) |
| 40 | 23 39 | negsubd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( x + -u ( Re ` x ) ) = ( x - ( Re ` x ) ) ) |
| 41 | replim | |- ( x e. CC -> x = ( ( Re ` x ) + ( _i x. ( Im ` x ) ) ) ) |
|
| 42 | 23 41 | syl | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> x = ( ( Re ` x ) + ( _i x. ( Im ` x ) ) ) ) |
| 43 | 42 | oveq1d | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( x - ( Re ` x ) ) = ( ( ( Re ` x ) + ( _i x. ( Im ` x ) ) ) - ( Re ` x ) ) ) |
| 44 | 39 35 | pncan2d | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( ( ( Re ` x ) + ( _i x. ( Im ` x ) ) ) - ( Re ` x ) ) = ( _i x. ( Im ` x ) ) ) |
| 45 | 40 43 44 | 3eqtrd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( x + -u ( Re ` x ) ) = ( _i x. ( Im ` x ) ) ) |
| 46 | simplr | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> RR C_ R ) |
|
| 47 | 38 | renegcld | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> -u ( Re ` x ) e. RR ) |
| 48 | 46 47 | sseldd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> -u ( Re ` x ) e. R ) |
| 49 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 50 | 49 | subrgacl | |- ( ( R e. ( SubRing ` CCfld ) /\ x e. R /\ -u ( Re ` x ) e. R ) -> ( x + -u ( Re ` x ) ) e. R ) |
| 51 | 8 22 48 50 | syl3anc | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( x + -u ( Re ` x ) ) e. R ) |
| 52 | 45 51 | eqeltrrd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( _i x. ( Im ` x ) ) e. R ) |
| 53 | 25 32 | rereccld | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( 1 / ( Im ` x ) ) e. RR ) |
| 54 | 46 53 | sseldd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( 1 / ( Im ` x ) ) e. R ) |
| 55 | cnfldmul | |- x. = ( .r ` CCfld ) |
|
| 56 | 55 | subrgmcl | |- ( ( R e. ( SubRing ` CCfld ) /\ ( _i x. ( Im ` x ) ) e. R /\ ( 1 / ( Im ` x ) ) e. R ) -> ( ( _i x. ( Im ` x ) ) x. ( 1 / ( Im ` x ) ) ) e. R ) |
| 57 | 8 52 54 56 | syl3anc | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( ( _i x. ( Im ` x ) ) x. ( 1 / ( Im ` x ) ) ) e. R ) |
| 58 | 37 57 | eqeltrd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> _i e. R ) |
| 59 | 58 | adantrr | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> _i e. R ) |
| 60 | imcl | |- ( y e. CC -> ( Im ` y ) e. RR ) |
|
| 61 | 60 | ad2antll | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( Im ` y ) e. RR ) |
| 62 | 15 61 | sseldd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( Im ` y ) e. R ) |
| 63 | 55 | subrgmcl | |- ( ( R e. ( SubRing ` CCfld ) /\ _i e. R /\ ( Im ` y ) e. R ) -> ( _i x. ( Im ` y ) ) e. R ) |
| 64 | 14 59 62 63 | syl3anc | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( _i x. ( Im ` y ) ) e. R ) |
| 65 | 49 | subrgacl | |- ( ( R e. ( SubRing ` CCfld ) /\ ( Re ` y ) e. R /\ ( _i x. ( Im ` y ) ) e. R ) -> ( ( Re ` y ) + ( _i x. ( Im ` y ) ) ) e. R ) |
| 66 | 14 18 64 65 | syl3anc | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> ( ( Re ` y ) + ( _i x. ( Im ` y ) ) ) e. R ) |
| 67 | 13 66 | eqeltrd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( x e. ( R \ RR ) /\ y e. CC ) ) -> y e. R ) |
| 68 | 67 | expr | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( y e. CC -> y e. R ) ) |
| 69 | 68 | ssrdv | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> CC C_ R ) |
| 70 | 11 69 | eqssd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> R = CC ) |
| 71 | 70 | olcd | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ x e. ( R \ RR ) ) -> ( R = RR \/ R = CC ) ) |
| 72 | 71 | ex | |- ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) -> ( x e. ( R \ RR ) -> ( R = RR \/ R = CC ) ) ) |
| 73 | 72 | exlimdv | |- ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) -> ( E. x x e. ( R \ RR ) -> ( R = RR \/ R = CC ) ) ) |
| 74 | 73 | imp | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ E. x x e. ( R \ RR ) ) -> ( R = RR \/ R = CC ) ) |
| 75 | 7 74 | sylan2b | |- ( ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) /\ ( R \ RR ) =/= (/) ) -> ( R = RR \/ R = CC ) ) |
| 76 | 6 75 | pm2.61dane | |- ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) -> ( R = RR \/ R = CC ) ) |
| 77 | elprg | |- ( R e. ( SubRing ` CCfld ) -> ( R e. { RR , CC } <-> ( R = RR \/ R = CC ) ) ) |
|
| 78 | 77 | adantr | |- ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) -> ( R e. { RR , CC } <-> ( R = RR \/ R = CC ) ) ) |
| 79 | 76 78 | mpbird | |- ( ( R e. ( SubRing ` CCfld ) /\ RR C_ R ) -> R e. { RR , CC } ) |