This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zsssubrg | |- ( R e. ( SubRing ` CCfld ) -> ZZ C_ R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> x e. ZZ ) |
|
| 2 | ax-1cn | |- 1 e. CC |
|
| 3 | cnfldmulg | |- ( ( x e. ZZ /\ 1 e. CC ) -> ( x ( .g ` CCfld ) 1 ) = ( x x. 1 ) ) |
|
| 4 | 1 2 3 | sylancl | |- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> ( x ( .g ` CCfld ) 1 ) = ( x x. 1 ) ) |
| 5 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 6 | 5 | adantl | |- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> x e. CC ) |
| 7 | 6 | mulridd | |- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> ( x x. 1 ) = x ) |
| 8 | 4 7 | eqtrd | |- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> ( x ( .g ` CCfld ) 1 ) = x ) |
| 9 | subrgsubg | |- ( R e. ( SubRing ` CCfld ) -> R e. ( SubGrp ` CCfld ) ) |
|
| 10 | 9 | adantr | |- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> R e. ( SubGrp ` CCfld ) ) |
| 11 | cnfld1 | |- 1 = ( 1r ` CCfld ) |
|
| 12 | 11 | subrg1cl | |- ( R e. ( SubRing ` CCfld ) -> 1 e. R ) |
| 13 | 12 | adantr | |- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> 1 e. R ) |
| 14 | eqid | |- ( .g ` CCfld ) = ( .g ` CCfld ) |
|
| 15 | 14 | subgmulgcl | |- ( ( R e. ( SubGrp ` CCfld ) /\ x e. ZZ /\ 1 e. R ) -> ( x ( .g ` CCfld ) 1 ) e. R ) |
| 16 | 10 1 13 15 | syl3anc | |- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> ( x ( .g ` CCfld ) 1 ) e. R ) |
| 17 | 8 16 | eqeltrrd | |- ( ( R e. ( SubRing ` CCfld ) /\ x e. ZZ ) -> x e. R ) |
| 18 | 17 | ex | |- ( R e. ( SubRing ` CCfld ) -> ( x e. ZZ -> x e. R ) ) |
| 19 | 18 | ssrdv | |- ( R e. ( SubRing ` CCfld ) -> ZZ C_ R ) |