This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a nonnegative real is less than any positive rational, it is zero. (Contributed by NM, 6-Feb-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qsqueeze | |- ( ( A e. RR /\ 0 <_ A /\ A. x e. QQ ( 0 < x -> A < x ) ) -> A = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0re | |- 0 e. RR |
|
| 2 | ltnle | |- ( ( 0 e. RR /\ A e. RR ) -> ( 0 < A <-> -. A <_ 0 ) ) |
|
| 3 | 1 2 | mpan | |- ( A e. RR -> ( 0 < A <-> -. A <_ 0 ) ) |
| 4 | qbtwnre | |- ( ( 0 e. RR /\ A e. RR /\ 0 < A ) -> E. x e. QQ ( 0 < x /\ x < A ) ) |
|
| 5 | 1 4 | mp3an1 | |- ( ( A e. RR /\ 0 < A ) -> E. x e. QQ ( 0 < x /\ x < A ) ) |
| 6 | 5 | ex | |- ( A e. RR -> ( 0 < A -> E. x e. QQ ( 0 < x /\ x < A ) ) ) |
| 7 | qre | |- ( x e. QQ -> x e. RR ) |
|
| 8 | ltnsym | |- ( ( A e. RR /\ x e. RR ) -> ( A < x -> -. x < A ) ) |
|
| 9 | 8 | con2d | |- ( ( A e. RR /\ x e. RR ) -> ( x < A -> -. A < x ) ) |
| 10 | 7 9 | sylan2 | |- ( ( A e. RR /\ x e. QQ ) -> ( x < A -> -. A < x ) ) |
| 11 | 10 | anim2d | |- ( ( A e. RR /\ x e. QQ ) -> ( ( 0 < x /\ x < A ) -> ( 0 < x /\ -. A < x ) ) ) |
| 12 | 11 | reximdva | |- ( A e. RR -> ( E. x e. QQ ( 0 < x /\ x < A ) -> E. x e. QQ ( 0 < x /\ -. A < x ) ) ) |
| 13 | 6 12 | syld | |- ( A e. RR -> ( 0 < A -> E. x e. QQ ( 0 < x /\ -. A < x ) ) ) |
| 14 | 3 13 | sylbird | |- ( A e. RR -> ( -. A <_ 0 -> E. x e. QQ ( 0 < x /\ -. A < x ) ) ) |
| 15 | rexanali | |- ( E. x e. QQ ( 0 < x /\ -. A < x ) <-> -. A. x e. QQ ( 0 < x -> A < x ) ) |
|
| 16 | 14 15 | imbitrdi | |- ( A e. RR -> ( -. A <_ 0 -> -. A. x e. QQ ( 0 < x -> A < x ) ) ) |
| 17 | 16 | con4d | |- ( A e. RR -> ( A. x e. QQ ( 0 < x -> A < x ) -> A <_ 0 ) ) |
| 18 | 17 | imp | |- ( ( A e. RR /\ A. x e. QQ ( 0 < x -> A < x ) ) -> A <_ 0 ) |
| 19 | 18 | 3adant2 | |- ( ( A e. RR /\ 0 <_ A /\ A. x e. QQ ( 0 < x -> A < x ) ) -> A <_ 0 ) |
| 20 | letri3 | |- ( ( A e. RR /\ 0 e. RR ) -> ( A = 0 <-> ( A <_ 0 /\ 0 <_ A ) ) ) |
|
| 21 | 1 20 | mpan2 | |- ( A e. RR -> ( A = 0 <-> ( A <_ 0 /\ 0 <_ A ) ) ) |
| 22 | 21 | rbaibd | |- ( ( A e. RR /\ 0 <_ A ) -> ( A = 0 <-> A <_ 0 ) ) |
| 23 | 22 | 3adant3 | |- ( ( A e. RR /\ 0 <_ A /\ A. x e. QQ ( 0 < x -> A < x ) ) -> ( A = 0 <-> A <_ 0 ) ) |
| 24 | 19 23 | mpbird | |- ( ( A e. RR /\ 0 <_ A /\ A. x e. QQ ( 0 < x -> A < x ) ) -> A = 0 ) |