This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The GCD of two numbers is the same as the GCD of the left and their sum. (Contributed by Scott Fenton, 20-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | gcdadd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( M gcd ( N + M ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z | |- 1 e. ZZ |
|
| 2 | gcdaddm | |- ( ( 1 e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( M gcd ( N + ( 1 x. M ) ) ) ) |
|
| 3 | 1 2 | mp3an1 | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( M gcd ( N + ( 1 x. M ) ) ) ) |
| 4 | zcn | |- ( M e. ZZ -> M e. CC ) |
|
| 5 | mullid | |- ( M e. CC -> ( 1 x. M ) = M ) |
|
| 6 | 5 | oveq2d | |- ( M e. CC -> ( N + ( 1 x. M ) ) = ( N + M ) ) |
| 7 | 6 | oveq2d | |- ( M e. CC -> ( M gcd ( N + ( 1 x. M ) ) ) = ( M gcd ( N + M ) ) ) |
| 8 | 4 7 | syl | |- ( M e. ZZ -> ( M gcd ( N + ( 1 x. M ) ) ) = ( M gcd ( N + M ) ) ) |
| 9 | 8 | adantr | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd ( N + ( 1 x. M ) ) ) = ( M gcd ( N + M ) ) ) |
| 10 | 3 9 | eqtrd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) = ( M gcd ( N + M ) ) ) |