This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for pythagtrip . Show the relationship between M , N , and C . (Contributed by Scott Fenton, 17-Apr-2014) (Revised by Mario Carneiro, 19-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pythagtriplem15.1 | ⊢ 𝑀 = ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) | |
| pythagtriplem15.2 | ⊢ 𝑁 = ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) | ||
| Assertion | pythagtriplem17 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐶 = ( ( 𝑀 ↑ 2 ) + ( 𝑁 ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pythagtriplem15.1 | ⊢ 𝑀 = ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) + ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) | |
| 2 | pythagtriplem15.2 | ⊢ 𝑁 = ( ( ( √ ‘ ( 𝐶 + 𝐵 ) ) − ( √ ‘ ( 𝐶 − 𝐵 ) ) ) / 2 ) | |
| 3 | 1 | pythagtriplem12 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝑀 ↑ 2 ) = ( ( 𝐶 + 𝐴 ) / 2 ) ) |
| 4 | 2 | pythagtriplem14 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝑁 ↑ 2 ) = ( ( 𝐶 − 𝐴 ) / 2 ) ) |
| 5 | 3 4 | oveq12d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝑀 ↑ 2 ) + ( 𝑁 ↑ 2 ) ) = ( ( ( 𝐶 + 𝐴 ) / 2 ) + ( ( 𝐶 − 𝐴 ) / 2 ) ) ) |
| 6 | nncn | ⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℂ ) | |
| 7 | 6 | 3ad2ant3 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℂ ) |
| 8 | 7 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐶 ∈ ℂ ) |
| 9 | nncn | ⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) | |
| 10 | 9 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 11 | 10 | 3ad2ant1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐴 ∈ ℂ ) |
| 12 | 8 11 | addcld | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 + 𝐴 ) ∈ ℂ ) |
| 13 | 8 11 | subcld | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐶 − 𝐴 ) ∈ ℂ ) |
| 14 | 2cnne0 | ⊢ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) | |
| 15 | divdir | ⊢ ( ( ( 𝐶 + 𝐴 ) ∈ ℂ ∧ ( 𝐶 − 𝐴 ) ∈ ℂ ∧ ( 2 ∈ ℂ ∧ 2 ≠ 0 ) ) → ( ( ( 𝐶 + 𝐴 ) + ( 𝐶 − 𝐴 ) ) / 2 ) = ( ( ( 𝐶 + 𝐴 ) / 2 ) + ( ( 𝐶 − 𝐴 ) / 2 ) ) ) | |
| 16 | 14 15 | mp3an3 | ⊢ ( ( ( 𝐶 + 𝐴 ) ∈ ℂ ∧ ( 𝐶 − 𝐴 ) ∈ ℂ ) → ( ( ( 𝐶 + 𝐴 ) + ( 𝐶 − 𝐴 ) ) / 2 ) = ( ( ( 𝐶 + 𝐴 ) / 2 ) + ( ( 𝐶 − 𝐴 ) / 2 ) ) ) |
| 17 | 12 13 16 | syl2anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐶 + 𝐴 ) + ( 𝐶 − 𝐴 ) ) / 2 ) = ( ( ( 𝐶 + 𝐴 ) / 2 ) + ( ( 𝐶 − 𝐴 ) / 2 ) ) ) |
| 18 | 5 17 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝑀 ↑ 2 ) + ( 𝑁 ↑ 2 ) ) = ( ( ( 𝐶 + 𝐴 ) + ( 𝐶 − 𝐴 ) ) / 2 ) ) |
| 19 | 8 11 8 | ppncand | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 + 𝐴 ) + ( 𝐶 − 𝐴 ) ) = ( 𝐶 + 𝐶 ) ) |
| 20 | 8 | 2timesd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 2 · 𝐶 ) = ( 𝐶 + 𝐶 ) ) |
| 21 | 19 20 | eqtr4d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 + 𝐴 ) + ( 𝐶 − 𝐴 ) ) = ( 2 · 𝐶 ) ) |
| 22 | 21 | oveq1d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐶 + 𝐴 ) + ( 𝐶 − 𝐴 ) ) / 2 ) = ( ( 2 · 𝐶 ) / 2 ) ) |
| 23 | 2cn | ⊢ 2 ∈ ℂ | |
| 24 | 2ne0 | ⊢ 2 ≠ 0 | |
| 25 | divcan3 | ⊢ ( ( 𝐶 ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0 ) → ( ( 2 · 𝐶 ) / 2 ) = 𝐶 ) | |
| 26 | 23 24 25 | mp3an23 | ⊢ ( 𝐶 ∈ ℂ → ( ( 2 · 𝐶 ) / 2 ) = 𝐶 ) |
| 27 | 8 26 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 2 · 𝐶 ) / 2 ) = 𝐶 ) |
| 28 | 18 22 27 | 3eqtrrd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 𝐶 = ( ( 𝑀 ↑ 2 ) + ( 𝑁 ↑ 2 ) ) ) |