This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsdiagghm.y | |- Y = ( R ^s I ) |
|
| pwsdiagghm.b | |- B = ( Base ` R ) |
||
| pwsdiagghm.f | |- F = ( x e. B |-> ( I X. { x } ) ) |
||
| Assertion | pwsdiagghm | |- ( ( R e. Grp /\ I e. W ) -> F e. ( R GrpHom Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsdiagghm.y | |- Y = ( R ^s I ) |
|
| 2 | pwsdiagghm.b | |- B = ( Base ` R ) |
|
| 3 | pwsdiagghm.f | |- F = ( x e. B |-> ( I X. { x } ) ) |
|
| 4 | grpmnd | |- ( R e. Grp -> R e. Mnd ) |
|
| 5 | 1 2 3 | pwsdiagmhm | |- ( ( R e. Mnd /\ I e. W ) -> F e. ( R MndHom Y ) ) |
| 6 | 4 5 | sylan | |- ( ( R e. Grp /\ I e. W ) -> F e. ( R MndHom Y ) ) |
| 7 | 1 | pwsgrp | |- ( ( R e. Grp /\ I e. W ) -> Y e. Grp ) |
| 8 | ghmmhmb | |- ( ( R e. Grp /\ Y e. Grp ) -> ( R GrpHom Y ) = ( R MndHom Y ) ) |
|
| 9 | 7 8 | syldan | |- ( ( R e. Grp /\ I e. W ) -> ( R GrpHom Y ) = ( R MndHom Y ) ) |
| 10 | 6 9 | eleqtrrd | |- ( ( R e. Grp /\ I e. W ) -> F e. ( R GrpHom Y ) ) |