This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left composition with a ring homomorphism yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsco2rhm.y | |- Y = ( R ^s A ) |
|
| pwsco2rhm.z | |- Z = ( S ^s A ) |
||
| pwsco2rhm.b | |- B = ( Base ` Y ) |
||
| pwsco2rhm.a | |- ( ph -> A e. V ) |
||
| pwsco2rhm.f | |- ( ph -> F e. ( R RingHom S ) ) |
||
| Assertion | pwsco2rhm | |- ( ph -> ( g e. B |-> ( F o. g ) ) e. ( Y RingHom Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsco2rhm.y | |- Y = ( R ^s A ) |
|
| 2 | pwsco2rhm.z | |- Z = ( S ^s A ) |
|
| 3 | pwsco2rhm.b | |- B = ( Base ` Y ) |
|
| 4 | pwsco2rhm.a | |- ( ph -> A e. V ) |
|
| 5 | pwsco2rhm.f | |- ( ph -> F e. ( R RingHom S ) ) |
|
| 6 | rhmrcl1 | |- ( F e. ( R RingHom S ) -> R e. Ring ) |
|
| 7 | 5 6 | syl | |- ( ph -> R e. Ring ) |
| 8 | 1 | pwsring | |- ( ( R e. Ring /\ A e. V ) -> Y e. Ring ) |
| 9 | 7 4 8 | syl2anc | |- ( ph -> Y e. Ring ) |
| 10 | rhmrcl2 | |- ( F e. ( R RingHom S ) -> S e. Ring ) |
|
| 11 | 5 10 | syl | |- ( ph -> S e. Ring ) |
| 12 | 2 | pwsring | |- ( ( S e. Ring /\ A e. V ) -> Z e. Ring ) |
| 13 | 11 4 12 | syl2anc | |- ( ph -> Z e. Ring ) |
| 14 | rhmghm | |- ( F e. ( R RingHom S ) -> F e. ( R GrpHom S ) ) |
|
| 15 | 5 14 | syl | |- ( ph -> F e. ( R GrpHom S ) ) |
| 16 | ghmmhm | |- ( F e. ( R GrpHom S ) -> F e. ( R MndHom S ) ) |
|
| 17 | 15 16 | syl | |- ( ph -> F e. ( R MndHom S ) ) |
| 18 | 1 2 3 4 17 | pwsco2mhm | |- ( ph -> ( g e. B |-> ( F o. g ) ) e. ( Y MndHom Z ) ) |
| 19 | ringgrp | |- ( Y e. Ring -> Y e. Grp ) |
|
| 20 | 9 19 | syl | |- ( ph -> Y e. Grp ) |
| 21 | ringgrp | |- ( Z e. Ring -> Z e. Grp ) |
|
| 22 | 13 21 | syl | |- ( ph -> Z e. Grp ) |
| 23 | ghmmhmb | |- ( ( Y e. Grp /\ Z e. Grp ) -> ( Y GrpHom Z ) = ( Y MndHom Z ) ) |
|
| 24 | 20 22 23 | syl2anc | |- ( ph -> ( Y GrpHom Z ) = ( Y MndHom Z ) ) |
| 25 | 18 24 | eleqtrrd | |- ( ph -> ( g e. B |-> ( F o. g ) ) e. ( Y GrpHom Z ) ) |
| 26 | eqid | |- ( ( mulGrp ` R ) ^s A ) = ( ( mulGrp ` R ) ^s A ) |
|
| 27 | eqid | |- ( ( mulGrp ` S ) ^s A ) = ( ( mulGrp ` S ) ^s A ) |
|
| 28 | eqid | |- ( Base ` ( ( mulGrp ` R ) ^s A ) ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) |
|
| 29 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
| 30 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 31 | 29 30 | rhmmhm | |- ( F e. ( R RingHom S ) -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) |
| 32 | 5 31 | syl | |- ( ph -> F e. ( ( mulGrp ` R ) MndHom ( mulGrp ` S ) ) ) |
| 33 | 26 27 28 4 32 | pwsco2mhm | |- ( ph -> ( g e. ( Base ` ( ( mulGrp ` R ) ^s A ) ) |-> ( F o. g ) ) e. ( ( ( mulGrp ` R ) ^s A ) MndHom ( ( mulGrp ` S ) ^s A ) ) ) |
| 34 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 35 | 1 34 | pwsbas | |- ( ( R e. Ring /\ A e. V ) -> ( ( Base ` R ) ^m A ) = ( Base ` Y ) ) |
| 36 | 7 4 35 | syl2anc | |- ( ph -> ( ( Base ` R ) ^m A ) = ( Base ` Y ) ) |
| 37 | 36 3 | eqtr4di | |- ( ph -> ( ( Base ` R ) ^m A ) = B ) |
| 38 | 29 | ringmgp | |- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 39 | 7 38 | syl | |- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 40 | 29 34 | mgpbas | |- ( Base ` R ) = ( Base ` ( mulGrp ` R ) ) |
| 41 | 26 40 | pwsbas | |- ( ( ( mulGrp ` R ) e. Mnd /\ A e. V ) -> ( ( Base ` R ) ^m A ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) ) |
| 42 | 39 4 41 | syl2anc | |- ( ph -> ( ( Base ` R ) ^m A ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) ) |
| 43 | 37 42 | eqtr3d | |- ( ph -> B = ( Base ` ( ( mulGrp ` R ) ^s A ) ) ) |
| 44 | 43 | mpteq1d | |- ( ph -> ( g e. B |-> ( F o. g ) ) = ( g e. ( Base ` ( ( mulGrp ` R ) ^s A ) ) |-> ( F o. g ) ) ) |
| 45 | eqidd | |- ( ph -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( mulGrp ` Y ) ) ) |
|
| 46 | eqidd | |- ( ph -> ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( mulGrp ` Z ) ) ) |
|
| 47 | eqid | |- ( mulGrp ` Y ) = ( mulGrp ` Y ) |
|
| 48 | eqid | |- ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( mulGrp ` Y ) ) |
|
| 49 | eqid | |- ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( mulGrp ` Y ) ) |
|
| 50 | eqid | |- ( +g ` ( ( mulGrp ` R ) ^s A ) ) = ( +g ` ( ( mulGrp ` R ) ^s A ) ) |
|
| 51 | 1 29 26 47 48 28 49 50 | pwsmgp | |- ( ( R e. Ring /\ A e. V ) -> ( ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) /\ ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( ( mulGrp ` R ) ^s A ) ) ) ) |
| 52 | 7 4 51 | syl2anc | |- ( ph -> ( ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) /\ ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( ( mulGrp ` R ) ^s A ) ) ) ) |
| 53 | 52 | simpld | |- ( ph -> ( Base ` ( mulGrp ` Y ) ) = ( Base ` ( ( mulGrp ` R ) ^s A ) ) ) |
| 54 | eqid | |- ( mulGrp ` Z ) = ( mulGrp ` Z ) |
|
| 55 | eqid | |- ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( mulGrp ` Z ) ) |
|
| 56 | eqid | |- ( Base ` ( ( mulGrp ` S ) ^s A ) ) = ( Base ` ( ( mulGrp ` S ) ^s A ) ) |
|
| 57 | eqid | |- ( +g ` ( mulGrp ` Z ) ) = ( +g ` ( mulGrp ` Z ) ) |
|
| 58 | eqid | |- ( +g ` ( ( mulGrp ` S ) ^s A ) ) = ( +g ` ( ( mulGrp ` S ) ^s A ) ) |
|
| 59 | 2 30 27 54 55 56 57 58 | pwsmgp | |- ( ( S e. Ring /\ A e. V ) -> ( ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( ( mulGrp ` S ) ^s A ) ) /\ ( +g ` ( mulGrp ` Z ) ) = ( +g ` ( ( mulGrp ` S ) ^s A ) ) ) ) |
| 60 | 11 4 59 | syl2anc | |- ( ph -> ( ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( ( mulGrp ` S ) ^s A ) ) /\ ( +g ` ( mulGrp ` Z ) ) = ( +g ` ( ( mulGrp ` S ) ^s A ) ) ) ) |
| 61 | 60 | simpld | |- ( ph -> ( Base ` ( mulGrp ` Z ) ) = ( Base ` ( ( mulGrp ` S ) ^s A ) ) ) |
| 62 | 52 | simprd | |- ( ph -> ( +g ` ( mulGrp ` Y ) ) = ( +g ` ( ( mulGrp ` R ) ^s A ) ) ) |
| 63 | 62 | oveqdr | |- ( ( ph /\ ( x e. ( Base ` ( mulGrp ` Y ) ) /\ y e. ( Base ` ( mulGrp ` Y ) ) ) ) -> ( x ( +g ` ( mulGrp ` Y ) ) y ) = ( x ( +g ` ( ( mulGrp ` R ) ^s A ) ) y ) ) |
| 64 | 60 | simprd | |- ( ph -> ( +g ` ( mulGrp ` Z ) ) = ( +g ` ( ( mulGrp ` S ) ^s A ) ) ) |
| 65 | 64 | oveqdr | |- ( ( ph /\ ( x e. ( Base ` ( mulGrp ` Z ) ) /\ y e. ( Base ` ( mulGrp ` Z ) ) ) ) -> ( x ( +g ` ( mulGrp ` Z ) ) y ) = ( x ( +g ` ( ( mulGrp ` S ) ^s A ) ) y ) ) |
| 66 | 45 46 53 61 63 65 | mhmpropd | |- ( ph -> ( ( mulGrp ` Y ) MndHom ( mulGrp ` Z ) ) = ( ( ( mulGrp ` R ) ^s A ) MndHom ( ( mulGrp ` S ) ^s A ) ) ) |
| 67 | 33 44 66 | 3eltr4d | |- ( ph -> ( g e. B |-> ( F o. g ) ) e. ( ( mulGrp ` Y ) MndHom ( mulGrp ` Z ) ) ) |
| 68 | 25 67 | jca | |- ( ph -> ( ( g e. B |-> ( F o. g ) ) e. ( Y GrpHom Z ) /\ ( g e. B |-> ( F o. g ) ) e. ( ( mulGrp ` Y ) MndHom ( mulGrp ` Z ) ) ) ) |
| 69 | 47 54 | isrhm | |- ( ( g e. B |-> ( F o. g ) ) e. ( Y RingHom Z ) <-> ( ( Y e. Ring /\ Z e. Ring ) /\ ( ( g e. B |-> ( F o. g ) ) e. ( Y GrpHom Z ) /\ ( g e. B |-> ( F o. g ) ) e. ( ( mulGrp ` Y ) MndHom ( mulGrp ` Z ) ) ) ) ) |
| 70 | 9 13 68 69 | syl21anbrc | |- ( ph -> ( g e. B |-> ( F o. g ) ) e. ( Y RingHom Z ) ) |