This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Left composition with a ring homomorphism yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsco2rhm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐴 ) | |
| pwsco2rhm.z | ⊢ 𝑍 = ( 𝑆 ↑s 𝐴 ) | ||
| pwsco2rhm.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| pwsco2rhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | ||
| pwsco2rhm.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) | ||
| Assertion | pwsco2rhm | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 RingHom 𝑍 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsco2rhm.y | ⊢ 𝑌 = ( 𝑅 ↑s 𝐴 ) | |
| 2 | pwsco2rhm.z | ⊢ 𝑍 = ( 𝑆 ↑s 𝐴 ) | |
| 3 | pwsco2rhm.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 4 | pwsco2rhm.a | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
| 5 | pwsco2rhm.f | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) | |
| 6 | rhmrcl1 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑅 ∈ Ring ) | |
| 7 | 5 6 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 8 | 1 | pwsring | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑉 ) → 𝑌 ∈ Ring ) |
| 9 | 7 4 8 | syl2anc | ⊢ ( 𝜑 → 𝑌 ∈ Ring ) |
| 10 | rhmrcl2 | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝑆 ∈ Ring ) | |
| 11 | 5 10 | syl | ⊢ ( 𝜑 → 𝑆 ∈ Ring ) |
| 12 | 2 | pwsring | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝐴 ∈ 𝑉 ) → 𝑍 ∈ Ring ) |
| 13 | 11 4 12 | syl2anc | ⊢ ( 𝜑 → 𝑍 ∈ Ring ) |
| 14 | rhmghm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) | |
| 15 | 5 14 | syl | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ) |
| 16 | ghmmhm | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 MndHom 𝑆 ) ) |
| 18 | 1 2 3 4 17 | pwsco2mhm | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 MndHom 𝑍 ) ) |
| 19 | ringgrp | ⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) | |
| 20 | 9 19 | syl | ⊢ ( 𝜑 → 𝑌 ∈ Grp ) |
| 21 | ringgrp | ⊢ ( 𝑍 ∈ Ring → 𝑍 ∈ Grp ) | |
| 22 | 13 21 | syl | ⊢ ( 𝜑 → 𝑍 ∈ Grp ) |
| 23 | ghmmhmb | ⊢ ( ( 𝑌 ∈ Grp ∧ 𝑍 ∈ Grp ) → ( 𝑌 GrpHom 𝑍 ) = ( 𝑌 MndHom 𝑍 ) ) | |
| 24 | 20 22 23 | syl2anc | ⊢ ( 𝜑 → ( 𝑌 GrpHom 𝑍 ) = ( 𝑌 MndHom 𝑍 ) ) |
| 25 | 18 24 | eleqtrrd | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 GrpHom 𝑍 ) ) |
| 26 | eqid | ⊢ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) = ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) | |
| 27 | eqid | ⊢ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) = ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) | |
| 28 | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) | |
| 29 | eqid | ⊢ ( mulGrp ‘ 𝑅 ) = ( mulGrp ‘ 𝑅 ) | |
| 30 | eqid | ⊢ ( mulGrp ‘ 𝑆 ) = ( mulGrp ‘ 𝑆 ) | |
| 31 | 29 30 | rhmmhm | ⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) |
| 32 | 5 31 | syl | ⊢ ( 𝜑 → 𝐹 ∈ ( ( mulGrp ‘ 𝑅 ) MndHom ( mulGrp ‘ 𝑆 ) ) ) |
| 33 | 26 27 28 4 32 | pwsco2mhm | ⊢ ( 𝜑 → ( 𝑔 ∈ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) MndHom ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ) |
| 34 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 35 | 1 34 | pwsbas | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) = ( Base ‘ 𝑌 ) ) |
| 36 | 7 4 35 | syl2anc | ⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) = ( Base ‘ 𝑌 ) ) |
| 37 | 36 3 | eqtr4di | ⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) = 𝐵 ) |
| 38 | 29 | ringmgp | ⊢ ( 𝑅 ∈ Ring → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 39 | 7 38 | syl | ⊢ ( 𝜑 → ( mulGrp ‘ 𝑅 ) ∈ Mnd ) |
| 40 | 29 34 | mgpbas | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( mulGrp ‘ 𝑅 ) ) |
| 41 | 26 40 | pwsbas | ⊢ ( ( ( mulGrp ‘ 𝑅 ) ∈ Mnd ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
| 42 | 39 4 41 | syl2anc | ⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m 𝐴 ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
| 43 | 37 42 | eqtr3d | ⊢ ( 𝜑 → 𝐵 = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
| 44 | 43 | mpteq1d | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) = ( 𝑔 ∈ ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ↦ ( 𝐹 ∘ 𝑔 ) ) ) |
| 45 | eqidd | ⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) | |
| 46 | eqidd | ⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ) | |
| 47 | eqid | ⊢ ( mulGrp ‘ 𝑌 ) = ( mulGrp ‘ 𝑌 ) | |
| 48 | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( mulGrp ‘ 𝑌 ) ) | |
| 49 | eqid | ⊢ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( mulGrp ‘ 𝑌 ) ) | |
| 50 | eqid | ⊢ ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) | |
| 51 | 1 29 26 47 48 28 49 50 | pwsmgp | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) ) |
| 52 | 7 4 51 | syl2anc | ⊢ ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) ) |
| 53 | 52 | simpld | ⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑌 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
| 54 | eqid | ⊢ ( mulGrp ‘ 𝑍 ) = ( mulGrp ‘ 𝑍 ) | |
| 55 | eqid | ⊢ ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( mulGrp ‘ 𝑍 ) ) | |
| 56 | eqid | ⊢ ( Base ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) | |
| 57 | eqid | ⊢ ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( mulGrp ‘ 𝑍 ) ) | |
| 58 | eqid | ⊢ ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) | |
| 59 | 2 30 27 54 55 56 57 58 | pwsmgp | ⊢ ( ( 𝑆 ∈ Ring ∧ 𝐴 ∈ 𝑉 ) → ( ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ) ) |
| 60 | 11 4 59 | syl2anc | ⊢ ( 𝜑 → ( ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ∧ ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ) ) |
| 61 | 60 | simpld | ⊢ ( 𝜑 → ( Base ‘ ( mulGrp ‘ 𝑍 ) ) = ( Base ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ) |
| 62 | 52 | simprd | ⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑌 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) ) |
| 63 | 62 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑌 ) ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑌 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) ) 𝑦 ) ) |
| 64 | 60 | simprd | ⊢ ( 𝜑 → ( +g ‘ ( mulGrp ‘ 𝑍 ) ) = ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ) |
| 65 | 64 | oveqdr | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ∧ 𝑦 ∈ ( Base ‘ ( mulGrp ‘ 𝑍 ) ) ) ) → ( 𝑥 ( +g ‘ ( mulGrp ‘ 𝑍 ) ) 𝑦 ) = ( 𝑥 ( +g ‘ ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) 𝑦 ) ) |
| 66 | 45 46 53 61 63 65 | mhmpropd | ⊢ ( 𝜑 → ( ( mulGrp ‘ 𝑌 ) MndHom ( mulGrp ‘ 𝑍 ) ) = ( ( ( mulGrp ‘ 𝑅 ) ↑s 𝐴 ) MndHom ( ( mulGrp ‘ 𝑆 ) ↑s 𝐴 ) ) ) |
| 67 | 33 44 66 | 3eltr4d | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( ( mulGrp ‘ 𝑌 ) MndHom ( mulGrp ‘ 𝑍 ) ) ) |
| 68 | 25 67 | jca | ⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 GrpHom 𝑍 ) ∧ ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( ( mulGrp ‘ 𝑌 ) MndHom ( mulGrp ‘ 𝑍 ) ) ) ) |
| 69 | 47 54 | isrhm | ⊢ ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 RingHom 𝑍 ) ↔ ( ( 𝑌 ∈ Ring ∧ 𝑍 ∈ Ring ) ∧ ( ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 GrpHom 𝑍 ) ∧ ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( ( mulGrp ‘ 𝑌 ) MndHom ( mulGrp ‘ 𝑍 ) ) ) ) ) |
| 70 | 9 13 68 69 | syl21anbrc | ⊢ ( 𝜑 → ( 𝑔 ∈ 𝐵 ↦ ( 𝐹 ∘ 𝑔 ) ) ∈ ( 𝑌 RingHom 𝑍 ) ) |