This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The multiplicative group of the power structure resembles the power of the multiplicative group. (Contributed by Mario Carneiro, 12-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsmgp.y | |- Y = ( R ^s I ) |
|
| pwsmgp.m | |- M = ( mulGrp ` R ) |
||
| pwsmgp.z | |- Z = ( M ^s I ) |
||
| pwsmgp.n | |- N = ( mulGrp ` Y ) |
||
| pwsmgp.b | |- B = ( Base ` N ) |
||
| pwsmgp.c | |- C = ( Base ` Z ) |
||
| pwsmgp.p | |- .+ = ( +g ` N ) |
||
| pwsmgp.q | |- .+b = ( +g ` Z ) |
||
| Assertion | pwsmgp | |- ( ( R e. V /\ I e. W ) -> ( B = C /\ .+ = .+b ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsmgp.y | |- Y = ( R ^s I ) |
|
| 2 | pwsmgp.m | |- M = ( mulGrp ` R ) |
|
| 3 | pwsmgp.z | |- Z = ( M ^s I ) |
|
| 4 | pwsmgp.n | |- N = ( mulGrp ` Y ) |
|
| 5 | pwsmgp.b | |- B = ( Base ` N ) |
|
| 6 | pwsmgp.c | |- C = ( Base ` Z ) |
|
| 7 | pwsmgp.p | |- .+ = ( +g ` N ) |
|
| 8 | pwsmgp.q | |- .+b = ( +g ` Z ) |
|
| 9 | eqid | |- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
|
| 10 | eqid | |- ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
|
| 11 | eqid | |- ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) = ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) |
|
| 12 | simpr | |- ( ( R e. V /\ I e. W ) -> I e. W ) |
|
| 13 | fvexd | |- ( ( R e. V /\ I e. W ) -> ( Scalar ` R ) e. _V ) |
|
| 14 | fnconstg | |- ( R e. V -> ( I X. { R } ) Fn I ) |
|
| 15 | 14 | adantr | |- ( ( R e. V /\ I e. W ) -> ( I X. { R } ) Fn I ) |
| 16 | 9 10 11 12 13 15 | prdsmgp | |- ( ( R e. V /\ I e. W ) -> ( ( Base ` ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) /\ ( +g ` ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) = ( +g ` ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) ) ) |
| 17 | 16 | simpld | |- ( ( R e. V /\ I e. W ) -> ( Base ` ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) ) |
| 18 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 19 | 1 18 | pwsval | |- ( ( R e. V /\ I e. W ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 20 | 19 | fveq2d | |- ( ( R e. V /\ I e. W ) -> ( mulGrp ` Y ) = ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 21 | 4 20 | eqtrid | |- ( ( R e. V /\ I e. W ) -> N = ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 22 | 21 | fveq2d | |- ( ( R e. V /\ I e. W ) -> ( Base ` N ) = ( Base ` ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) ) |
| 23 | 2 | fvexi | |- M e. _V |
| 24 | eqid | |- ( M ^s I ) = ( M ^s I ) |
|
| 25 | eqid | |- ( Scalar ` M ) = ( Scalar ` M ) |
|
| 26 | 24 25 | pwsval | |- ( ( M e. _V /\ I e. W ) -> ( M ^s I ) = ( ( Scalar ` M ) Xs_ ( I X. { M } ) ) ) |
| 27 | 23 12 26 | sylancr | |- ( ( R e. V /\ I e. W ) -> ( M ^s I ) = ( ( Scalar ` M ) Xs_ ( I X. { M } ) ) ) |
| 28 | 2 18 | mgpsca | |- ( Scalar ` R ) = ( Scalar ` M ) |
| 29 | 28 | eqcomi | |- ( Scalar ` M ) = ( Scalar ` R ) |
| 30 | 29 | a1i | |- ( ( R e. V /\ I e. W ) -> ( Scalar ` M ) = ( Scalar ` R ) ) |
| 31 | 2 | sneqi | |- { M } = { ( mulGrp ` R ) } |
| 32 | 31 | xpeq2i | |- ( I X. { M } ) = ( I X. { ( mulGrp ` R ) } ) |
| 33 | fnmgp | |- mulGrp Fn _V |
|
| 34 | elex | |- ( R e. V -> R e. _V ) |
|
| 35 | 34 | adantr | |- ( ( R e. V /\ I e. W ) -> R e. _V ) |
| 36 | fcoconst | |- ( ( mulGrp Fn _V /\ R e. _V ) -> ( mulGrp o. ( I X. { R } ) ) = ( I X. { ( mulGrp ` R ) } ) ) |
|
| 37 | 33 35 36 | sylancr | |- ( ( R e. V /\ I e. W ) -> ( mulGrp o. ( I X. { R } ) ) = ( I X. { ( mulGrp ` R ) } ) ) |
| 38 | 32 37 | eqtr4id | |- ( ( R e. V /\ I e. W ) -> ( I X. { M } ) = ( mulGrp o. ( I X. { R } ) ) ) |
| 39 | 30 38 | oveq12d | |- ( ( R e. V /\ I e. W ) -> ( ( Scalar ` M ) Xs_ ( I X. { M } ) ) = ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) |
| 40 | 27 39 | eqtrd | |- ( ( R e. V /\ I e. W ) -> ( M ^s I ) = ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) |
| 41 | 3 40 | eqtrid | |- ( ( R e. V /\ I e. W ) -> Z = ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) |
| 42 | 41 | fveq2d | |- ( ( R e. V /\ I e. W ) -> ( Base ` Z ) = ( Base ` ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) ) |
| 43 | 17 22 42 | 3eqtr4d | |- ( ( R e. V /\ I e. W ) -> ( Base ` N ) = ( Base ` Z ) ) |
| 44 | 43 5 6 | 3eqtr4g | |- ( ( R e. V /\ I e. W ) -> B = C ) |
| 45 | 16 | simprd | |- ( ( R e. V /\ I e. W ) -> ( +g ` ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) = ( +g ` ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) ) |
| 46 | 21 | fveq2d | |- ( ( R e. V /\ I e. W ) -> ( +g ` N ) = ( +g ` ( mulGrp ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) ) |
| 47 | 41 | fveq2d | |- ( ( R e. V /\ I e. W ) -> ( +g ` Z ) = ( +g ` ( ( Scalar ` R ) Xs_ ( mulGrp o. ( I X. { R } ) ) ) ) ) |
| 48 | 45 46 47 | 3eqtr4d | |- ( ( R e. V /\ I e. W ) -> ( +g ` N ) = ( +g ` Z ) ) |
| 49 | 48 7 8 | 3eqtr4g | |- ( ( R e. V /\ I e. W ) -> .+ = .+b ) |
| 50 | 44 49 | jca | |- ( ( R e. V /\ I e. W ) -> ( B = C /\ .+ = .+b ) ) |