This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Base set of a structure power. (Contributed by Mario Carneiro, 11-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pwsbas.y | |- Y = ( R ^s I ) |
|
| pwsbas.f | |- B = ( Base ` R ) |
||
| Assertion | pwsbas | |- ( ( R e. V /\ I e. W ) -> ( B ^m I ) = ( Base ` Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsbas.y | |- Y = ( R ^s I ) |
|
| 2 | pwsbas.f | |- B = ( Base ` R ) |
|
| 3 | eqid | |- ( Scalar ` R ) = ( Scalar ` R ) |
|
| 4 | 1 3 | pwsval | |- ( ( R e. V /\ I e. W ) -> Y = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
| 5 | 4 | fveq2d | |- ( ( R e. V /\ I e. W ) -> ( Base ` Y ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) ) |
| 6 | eqid | |- ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) = ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) |
|
| 7 | fvexd | |- ( ( R e. V /\ I e. W ) -> ( Scalar ` R ) e. _V ) |
|
| 8 | simpr | |- ( ( R e. V /\ I e. W ) -> I e. W ) |
|
| 9 | snex | |- { R } e. _V |
|
| 10 | xpexg | |- ( ( I e. W /\ { R } e. _V ) -> ( I X. { R } ) e. _V ) |
|
| 11 | 8 9 10 | sylancl | |- ( ( R e. V /\ I e. W ) -> ( I X. { R } ) e. _V ) |
| 12 | eqid | |- ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) |
|
| 13 | snnzg | |- ( R e. V -> { R } =/= (/) ) |
|
| 14 | 13 | adantr | |- ( ( R e. V /\ I e. W ) -> { R } =/= (/) ) |
| 15 | dmxp | |- ( { R } =/= (/) -> dom ( I X. { R } ) = I ) |
|
| 16 | 14 15 | syl | |- ( ( R e. V /\ I e. W ) -> dom ( I X. { R } ) = I ) |
| 17 | 6 7 11 12 16 | prdsbas | |- ( ( R e. V /\ I e. W ) -> ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = X_ x e. I ( Base ` ( ( I X. { R } ) ` x ) ) ) |
| 18 | fvconst2g | |- ( ( R e. V /\ x e. I ) -> ( ( I X. { R } ) ` x ) = R ) |
|
| 19 | 18 | fveq2d | |- ( ( R e. V /\ x e. I ) -> ( Base ` ( ( I X. { R } ) ` x ) ) = ( Base ` R ) ) |
| 20 | 19 | ralrimiva | |- ( R e. V -> A. x e. I ( Base ` ( ( I X. { R } ) ` x ) ) = ( Base ` R ) ) |
| 21 | 20 | adantr | |- ( ( R e. V /\ I e. W ) -> A. x e. I ( Base ` ( ( I X. { R } ) ` x ) ) = ( Base ` R ) ) |
| 22 | ixpeq2 | |- ( A. x e. I ( Base ` ( ( I X. { R } ) ` x ) ) = ( Base ` R ) -> X_ x e. I ( Base ` ( ( I X. { R } ) ` x ) ) = X_ x e. I ( Base ` R ) ) |
|
| 23 | 21 22 | syl | |- ( ( R e. V /\ I e. W ) -> X_ x e. I ( Base ` ( ( I X. { R } ) ` x ) ) = X_ x e. I ( Base ` R ) ) |
| 24 | 17 23 | eqtrd | |- ( ( R e. V /\ I e. W ) -> ( Base ` ( ( Scalar ` R ) Xs_ ( I X. { R } ) ) ) = X_ x e. I ( Base ` R ) ) |
| 25 | fvex | |- ( Base ` R ) e. _V |
|
| 26 | ixpconstg | |- ( ( I e. W /\ ( Base ` R ) e. _V ) -> X_ x e. I ( Base ` R ) = ( ( Base ` R ) ^m I ) ) |
|
| 27 | 8 25 26 | sylancl | |- ( ( R e. V /\ I e. W ) -> X_ x e. I ( Base ` R ) = ( ( Base ` R ) ^m I ) ) |
| 28 | 2 | oveq1i | |- ( B ^m I ) = ( ( Base ` R ) ^m I ) |
| 29 | 27 28 | eqtr4di | |- ( ( R e. V /\ I e. W ) -> X_ x e. I ( Base ` R ) = ( B ^m I ) ) |
| 30 | 5 24 29 | 3eqtrrd | |- ( ( R e. V /\ I e. W ) -> ( B ^m I ) = ( Base ` Y ) ) |