This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Group homomorphisms and monoid homomorphisms coincide. (Thus, GrpHom is somewhat redundant, although its stronger reverse closure properties are sometimes useful.) (Contributed by Stefan O'Rear, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ghmmhmb | |- ( ( S e. Grp /\ T e. Grp ) -> ( S GrpHom T ) = ( S MndHom T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmmhm | |- ( f e. ( S GrpHom T ) -> f e. ( S MndHom T ) ) |
|
| 2 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 3 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 4 | eqid | |- ( +g ` S ) = ( +g ` S ) |
|
| 5 | eqid | |- ( +g ` T ) = ( +g ` T ) |
|
| 6 | simpll | |- ( ( ( S e. Grp /\ T e. Grp ) /\ f e. ( S MndHom T ) ) -> S e. Grp ) |
|
| 7 | simplr | |- ( ( ( S e. Grp /\ T e. Grp ) /\ f e. ( S MndHom T ) ) -> T e. Grp ) |
|
| 8 | 2 3 | mhmf | |- ( f e. ( S MndHom T ) -> f : ( Base ` S ) --> ( Base ` T ) ) |
| 9 | 8 | adantl | |- ( ( ( S e. Grp /\ T e. Grp ) /\ f e. ( S MndHom T ) ) -> f : ( Base ` S ) --> ( Base ` T ) ) |
| 10 | 2 4 5 | mhmlin | |- ( ( f e. ( S MndHom T ) /\ x e. ( Base ` S ) /\ y e. ( Base ` S ) ) -> ( f ` ( x ( +g ` S ) y ) ) = ( ( f ` x ) ( +g ` T ) ( f ` y ) ) ) |
| 11 | 10 | 3expb | |- ( ( f e. ( S MndHom T ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( f ` ( x ( +g ` S ) y ) ) = ( ( f ` x ) ( +g ` T ) ( f ` y ) ) ) |
| 12 | 11 | adantll | |- ( ( ( ( S e. Grp /\ T e. Grp ) /\ f e. ( S MndHom T ) ) /\ ( x e. ( Base ` S ) /\ y e. ( Base ` S ) ) ) -> ( f ` ( x ( +g ` S ) y ) ) = ( ( f ` x ) ( +g ` T ) ( f ` y ) ) ) |
| 13 | 2 3 4 5 6 7 9 12 | isghmd | |- ( ( ( S e. Grp /\ T e. Grp ) /\ f e. ( S MndHom T ) ) -> f e. ( S GrpHom T ) ) |
| 14 | 13 | ex | |- ( ( S e. Grp /\ T e. Grp ) -> ( f e. ( S MndHom T ) -> f e. ( S GrpHom T ) ) ) |
| 15 | 1 14 | impbid2 | |- ( ( S e. Grp /\ T e. Grp ) -> ( f e. ( S GrpHom T ) <-> f e. ( S MndHom T ) ) ) |
| 16 | 15 | eqrdv | |- ( ( S e. Grp /\ T e. Grp ) -> ( S GrpHom T ) = ( S MndHom T ) ) |