This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The relation "is isomorphic to" for (unital) rings. (Contributed by AV, 24-Dec-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brric | |- ( R ~=r S <-> ( R RingIso S ) =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ric | |- ~=r = ( `' RingIso " ( _V \ 1o ) ) |
|
| 2 | ovex | |- ( r RingHom s ) e. _V |
|
| 3 | rabexg | |- ( ( r RingHom s ) e. _V -> { h e. ( r RingHom s ) | `' h e. ( s RingHom r ) } e. _V ) |
|
| 4 | 2 3 | mp1i | |- ( ( r e. _V /\ s e. _V ) -> { h e. ( r RingHom s ) | `' h e. ( s RingHom r ) } e. _V ) |
| 5 | 4 | rgen2 | |- A. r e. _V A. s e. _V { h e. ( r RingHom s ) | `' h e. ( s RingHom r ) } e. _V |
| 6 | df-rim | |- RingIso = ( r e. _V , s e. _V |-> { h e. ( r RingHom s ) | `' h e. ( s RingHom r ) } ) |
|
| 7 | 6 | fnmpo | |- ( A. r e. _V A. s e. _V { h e. ( r RingHom s ) | `' h e. ( s RingHom r ) } e. _V -> RingIso Fn ( _V X. _V ) ) |
| 8 | 5 7 | ax-mp | |- RingIso Fn ( _V X. _V ) |
| 9 | 1 8 | brwitnlem | |- ( R ~=r S <-> ( R RingIso S ) =/= (/) ) |