This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A function that maps a singleton to a class is the singleton of an ordered pair. (Contributed by Thierry Arnoux, 11-Jul-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsn2g | |- ( A e. V -> ( F : { A } --> B <-> ( ( F ` A ) e. B /\ F = { <. A , ( F ` A ) >. } ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sneq | |- ( a = A -> { a } = { A } ) |
|
| 2 | 1 | feq2d | |- ( a = A -> ( F : { a } --> B <-> F : { A } --> B ) ) |
| 3 | fveq2 | |- ( a = A -> ( F ` a ) = ( F ` A ) ) |
|
| 4 | 3 | eleq1d | |- ( a = A -> ( ( F ` a ) e. B <-> ( F ` A ) e. B ) ) |
| 5 | id | |- ( a = A -> a = A ) |
|
| 6 | 5 3 | opeq12d | |- ( a = A -> <. a , ( F ` a ) >. = <. A , ( F ` A ) >. ) |
| 7 | 6 | sneqd | |- ( a = A -> { <. a , ( F ` a ) >. } = { <. A , ( F ` A ) >. } ) |
| 8 | 7 | eqeq2d | |- ( a = A -> ( F = { <. a , ( F ` a ) >. } <-> F = { <. A , ( F ` A ) >. } ) ) |
| 9 | 4 8 | anbi12d | |- ( a = A -> ( ( ( F ` a ) e. B /\ F = { <. a , ( F ` a ) >. } ) <-> ( ( F ` A ) e. B /\ F = { <. A , ( F ` A ) >. } ) ) ) |
| 10 | vex | |- a e. _V |
|
| 11 | 10 | fsn2 | |- ( F : { a } --> B <-> ( ( F ` a ) e. B /\ F = { <. a , ( F ` a ) >. } ) ) |
| 12 | 2 9 11 | vtoclbg | |- ( A e. V -> ( F : { A } --> B <-> ( ( F ` A ) e. B /\ F = { <. A , ( F ` A ) >. } ) ) ) |