This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | mptcnv.1 | |- ( ph -> ( ( x e. A /\ y = B ) <-> ( y e. C /\ x = D ) ) ) |
|
| Assertion | mptcnv | |- ( ph -> `' ( x e. A |-> B ) = ( y e. C |-> D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mptcnv.1 | |- ( ph -> ( ( x e. A /\ y = B ) <-> ( y e. C /\ x = D ) ) ) |
|
| 2 | 1 | opabbidv | |- ( ph -> { <. y , x >. | ( x e. A /\ y = B ) } = { <. y , x >. | ( y e. C /\ x = D ) } ) |
| 3 | df-mpt | |- ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) } |
|
| 4 | 3 | cnveqi | |- `' ( x e. A |-> B ) = `' { <. x , y >. | ( x e. A /\ y = B ) } |
| 5 | cnvopab | |- `' { <. x , y >. | ( x e. A /\ y = B ) } = { <. y , x >. | ( x e. A /\ y = B ) } |
|
| 6 | 4 5 | eqtri | |- `' ( x e. A |-> B ) = { <. y , x >. | ( x e. A /\ y = B ) } |
| 7 | df-mpt | |- ( y e. C |-> D ) = { <. y , x >. | ( y e. C /\ x = D ) } |
|
| 8 | 2 6 7 | 3eqtr4g | |- ( ph -> `' ( x e. A |-> B ) = ( y e. C |-> D ) ) |