This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A scalar is lifted into a member of the power series. (Contributed by SN, 25-Apr-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psrasclcl.s | |- S = ( I mPwSer R ) |
|
| psrasclcl.b | |- B = ( Base ` S ) |
||
| psrasclcl.k | |- K = ( Base ` R ) |
||
| psrasclcl.a | |- A = ( algSc ` S ) |
||
| psrasclcl.i | |- ( ph -> I e. W ) |
||
| psrasclcl.r | |- ( ph -> R e. Ring ) |
||
| psrasclcl.c | |- ( ph -> C e. K ) |
||
| Assertion | psrasclcl | |- ( ph -> ( A ` C ) e. B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psrasclcl.s | |- S = ( I mPwSer R ) |
|
| 2 | psrasclcl.b | |- B = ( Base ` S ) |
|
| 3 | psrasclcl.k | |- K = ( Base ` R ) |
|
| 4 | psrasclcl.a | |- A = ( algSc ` S ) |
|
| 5 | psrasclcl.i | |- ( ph -> I e. W ) |
|
| 6 | psrasclcl.r | |- ( ph -> R e. Ring ) |
|
| 7 | psrasclcl.c | |- ( ph -> C e. K ) |
|
| 8 | eqid | |- ( Scalar ` S ) = ( Scalar ` S ) |
|
| 9 | 1 5 6 | psrring | |- ( ph -> S e. Ring ) |
| 10 | 1 5 6 | psrlmod | |- ( ph -> S e. LMod ) |
| 11 | eqid | |- ( Base ` ( Scalar ` S ) ) = ( Base ` ( Scalar ` S ) ) |
|
| 12 | 4 8 9 10 11 2 | asclf | |- ( ph -> A : ( Base ` ( Scalar ` S ) ) --> B ) |
| 13 | 1 5 6 | psrsca | |- ( ph -> R = ( Scalar ` S ) ) |
| 14 | 13 | fveq2d | |- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` S ) ) ) |
| 15 | 3 14 | eqtrid | |- ( ph -> K = ( Base ` ( Scalar ` S ) ) ) |
| 16 | 15 | feq2d | |- ( ph -> ( A : K --> B <-> A : ( Base ` ( Scalar ` S ) ) --> B ) ) |
| 17 | 12 16 | mpbird | |- ( ph -> A : K --> B ) |
| 18 | 17 7 | ffvelcdmd | |- ( ph -> ( A ` C ) e. B ) |