This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Embedding of permutation signs restricted to a set without a single element into a ring. (Contributed by AV, 31-Jan-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | psgndif.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| psgndif.s | |- S = ( pmSgn ` N ) |
||
| psgndif.z | |- Z = ( pmSgn ` ( N \ { K } ) ) |
||
| Assertion | psgndif | |- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> ( Z ` ( Q |` ( N \ { K } ) ) ) = ( S ` Q ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | psgndif.p | |- P = ( Base ` ( SymGrp ` N ) ) |
|
| 2 | psgndif.s | |- S = ( pmSgn ` N ) |
|
| 3 | psgndif.z | |- Z = ( pmSgn ` ( N \ { K } ) ) |
|
| 4 | eqid | |- ran ( pmTrsp ` ( N \ { K } ) ) = ran ( pmTrsp ` ( N \ { K } ) ) |
|
| 5 | eqid | |- ( SymGrp ` ( N \ { K } ) ) = ( SymGrp ` ( N \ { K } ) ) |
|
| 6 | eqid | |- ( SymGrp ` N ) = ( SymGrp ` N ) |
|
| 7 | eqid | |- ran ( pmTrsp ` N ) = ran ( pmTrsp ` N ) |
|
| 8 | 1 4 5 6 7 | psgnfix2 | |- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. r e. Word ran ( pmTrsp ` N ) Q = ( ( SymGrp ` N ) gsum r ) ) ) |
| 9 | 8 | imp | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> E. r e. Word ran ( pmTrsp ` N ) Q = ( ( SymGrp ` N ) gsum r ) ) |
| 10 | 9 | ad2antrr | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) -> E. r e. Word ran ( pmTrsp ` N ) Q = ( ( SymGrp ` N ) gsum r ) ) |
| 11 | 1 4 5 6 7 | psgndiflemA | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( ( w e. Word ran ( pmTrsp ` ( N \ { K } ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ r e. Word ran ( pmTrsp ` N ) ) -> ( Q = ( ( SymGrp ` N ) gsum r ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) ) |
| 12 | 11 | imp | |- ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ ( w e. Word ran ( pmTrsp ` ( N \ { K } ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ r e. Word ran ( pmTrsp ` N ) ) ) -> ( Q = ( ( SymGrp ` N ) gsum r ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) |
| 13 | 12 | 3anassrs | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) /\ r e. Word ran ( pmTrsp ` N ) ) -> ( Q = ( ( SymGrp ` N ) gsum r ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) |
| 14 | 13 | adantlrr | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) /\ r e. Word ran ( pmTrsp ` N ) ) -> ( Q = ( ( SymGrp ` N ) gsum r ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) |
| 15 | eqeq1 | |- ( s = ( -u 1 ^ ( # ` w ) ) -> ( s = ( -u 1 ^ ( # ` r ) ) <-> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) |
|
| 16 | 15 | ad2antll | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) -> ( s = ( -u 1 ^ ( # ` r ) ) <-> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) |
| 17 | 16 | adantr | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) /\ r e. Word ran ( pmTrsp ` N ) ) -> ( s = ( -u 1 ^ ( # ` r ) ) <-> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) ) |
| 18 | 14 17 | sylibrd | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) /\ r e. Word ran ( pmTrsp ` N ) ) -> ( Q = ( ( SymGrp ` N ) gsum r ) -> s = ( -u 1 ^ ( # ` r ) ) ) ) |
| 19 | 18 | ralrimiva | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) -> A. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) -> s = ( -u 1 ^ ( # ` r ) ) ) ) |
| 20 | 10 19 | r19.29imd | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) -> E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) |
| 21 | 20 | rexlimdva2 | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) -> E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) ) |
| 22 | 1 4 5 | psgnfix1 | |- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) ) |
| 23 | 22 | imp | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) |
| 24 | 23 | ad2antrr | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) -> E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) |
| 25 | simp-4l | |- ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) ) |
|
| 26 | simpr | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) -> w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) |
|
| 27 | 26 | adantr | |- ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) |
| 28 | simpr | |- ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) |
|
| 29 | simp-4r | |- ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> r e. Word ran ( pmTrsp ` N ) ) |
|
| 30 | 27 28 29 | 3jca | |- ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> ( w e. Word ran ( pmTrsp ` ( N \ { K } ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ r e. Word ran ( pmTrsp ` N ) ) ) |
| 31 | simpr | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) -> Q = ( ( SymGrp ` N ) gsum r ) ) |
|
| 32 | 31 | ad2antrr | |- ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> Q = ( ( SymGrp ` N ) gsum r ) ) |
| 33 | 25 30 32 11 | syl3c | |- ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> ( -u 1 ^ ( # ` w ) ) = ( -u 1 ^ ( # ` r ) ) ) |
| 34 | 33 | eqcomd | |- ( ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) /\ ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) ) -> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) |
| 35 | 34 | ex | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ Q = ( ( SymGrp ` N ) gsum r ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) -> ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) -> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) ) |
| 36 | 35 | adantlrr | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) -> ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) -> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) ) |
| 37 | eqeq1 | |- ( s = ( -u 1 ^ ( # ` r ) ) -> ( s = ( -u 1 ^ ( # ` w ) ) <-> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) ) |
|
| 38 | 37 | ad2antll | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) -> ( s = ( -u 1 ^ ( # ` w ) ) <-> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) ) |
| 39 | 38 | adantr | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) -> ( s = ( -u 1 ^ ( # ` w ) ) <-> ( -u 1 ^ ( # ` r ) ) = ( -u 1 ^ ( # ` w ) ) ) ) |
| 40 | 36 39 | sylibrd | |- ( ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) /\ w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ) -> ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) -> s = ( -u 1 ^ ( # ` w ) ) ) ) |
| 41 | 40 | ralrimiva | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) -> A. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) -> s = ( -u 1 ^ ( # ` w ) ) ) ) |
| 42 | 24 41 | r19.29imd | |- ( ( ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) /\ r e. Word ran ( pmTrsp ` N ) ) /\ ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) -> E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) |
| 43 | 42 | rexlimdva2 | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) -> E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 44 | 21 43 | impbid | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) <-> E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) ) |
| 45 | 44 | iotabidv | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( iota s E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) = ( iota s E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) ) |
| 46 | diffi | |- ( N e. Fin -> ( N \ { K } ) e. Fin ) |
|
| 47 | 46 | ad2antrr | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( N \ { K } ) e. Fin ) |
| 48 | eqid | |- { q e. P | ( q ` K ) = K } = { q e. P | ( q ` K ) = K } |
|
| 49 | eqid | |- ( Base ` ( SymGrp ` ( N \ { K } ) ) ) = ( Base ` ( SymGrp ` ( N \ { K } ) ) ) |
|
| 50 | eqid | |- ( N \ { K } ) = ( N \ { K } ) |
|
| 51 | 1 48 49 50 | symgfixelsi | |- ( ( K e. N /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Q |` ( N \ { K } ) ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) |
| 52 | 51 | adantll | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Q |` ( N \ { K } ) ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) |
| 53 | 5 49 4 3 | psgnvalfi | |- ( ( ( N \ { K } ) e. Fin /\ ( Q |` ( N \ { K } ) ) e. ( Base ` ( SymGrp ` ( N \ { K } ) ) ) ) -> ( Z ` ( Q |` ( N \ { K } ) ) ) = ( iota s E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 54 | 47 52 53 | syl2anc | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Z ` ( Q |` ( N \ { K } ) ) ) = ( iota s E. w e. Word ran ( pmTrsp ` ( N \ { K } ) ) ( ( Q |` ( N \ { K } ) ) = ( ( SymGrp ` ( N \ { K } ) ) gsum w ) /\ s = ( -u 1 ^ ( # ` w ) ) ) ) ) |
| 55 | simpl | |- ( ( N e. Fin /\ K e. N ) -> N e. Fin ) |
|
| 56 | elrabi | |- ( Q e. { q e. P | ( q ` K ) = K } -> Q e. P ) |
|
| 57 | 6 1 7 2 | psgnvalfi | |- ( ( N e. Fin /\ Q e. P ) -> ( S ` Q ) = ( iota s E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) ) |
| 58 | 55 56 57 | syl2an | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( S ` Q ) = ( iota s E. r e. Word ran ( pmTrsp ` N ) ( Q = ( ( SymGrp ` N ) gsum r ) /\ s = ( -u 1 ^ ( # ` r ) ) ) ) ) |
| 59 | 45 54 58 | 3eqtr4d | |- ( ( ( N e. Fin /\ K e. N ) /\ Q e. { q e. P | ( q ` K ) = K } ) -> ( Z ` ( Q |` ( N \ { K } ) ) ) = ( S ` Q ) ) |
| 60 | 59 | ex | |- ( ( N e. Fin /\ K e. N ) -> ( Q e. { q e. P | ( q ` K ) = K } -> ( Z ` ( Q |` ( N \ { K } ) ) ) = ( S ` Q ) ) ) |